PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Strand wire winding method in a solenoidal coil with limited geometry for good impedance matching

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper reports a new strand wire winding method in a solenoidal coil with limited geometry that enables good impedance matching. In the proposed method strand wires are wound layer-by-layer on top of each other allowing one to set equivalent inductance and resistance of the coil to desired values while obtaining dense magnetic flux and high current carrying capacity. As a proof-of-concept demonstration, simple model setups were constructed with solenoidal coils composed of copper wire strands wound according to the proposed method, and a plastic pipe. The measurements were repeated with a metal shell placed inside the coil to model a complete heating system. System inductance and resistance were measured at two different frequencies. The results show that with the new winding method it is possible to increase a coil’s turn number and the number of strand layers composed by the coil. Also, adding and removing strand layers in the proposed coil architectures enable inductance and resistance values to decrease and increase, respectively, in a controlled way. To understand changes of system parameters, simulations were also performed. The calculated inductance and resistance values in the simulations agree well with the measurement results and magnetic flux distribution created in the system demonstrates the changes.
Słowa kluczowe
Rocznik
Strony
239--252
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
  • Department of Electrical and Electronics Engineering Abdullah Gul University Kayseri, Turkiye
Bibliografia
  • [1] Acero J., Burdio J. M., Barragan L. A., Navarro D., Alonso R., Ramon J., Monterde F., Hernandez P., Llorente S., Garde I., Domestic induction appliances, IEEE Industry Applications Magazine, vol. 16, no. 2, pp. 39–47 (2010), DOI: 10.1109/MIAS.2009.935495.
  • [2] Lucia O., Acero J., Carretero C., Burdio J.M., Induction heating appliances: toward more flexible cooking surfaces, IEEE Industrial Electronics Magazine, vol. 7, no. 3, pp. 35–47 (2013), DOI: 10.1109/MIE.2013.2247795.
  • [3] Gao X., Li X., Transmission characteristics of the mobile inductively coupled power transfer system for dual transmitters and pickups based on PSpice, Archives of Electrical Engineering, vol. 69, no. 1, pp. 147–157 (2020), DOI: 10.24425/aee.2020.131764.
  • [4] Acero J., Alonso R., Burdio J. M., Barragan L. A., Llorente S., Electromagnetic induction of planar windings with cylindrical symmetry between two half-spaces, Journal of Applied Physics, vol. 103, no. 10, pp. 104905-1–104905-8 (2008), DOI: 10.1063/1.2903572.
  • [5] Kilic V. T., Unal E., Gonendik E., Yilmaz N., Demir H. V., Strongly coupled outer squircle-inner circular coil architecture for enhanced induction over large areas, IEEE Transactions on Industrial Electronics, vol. 63, no. 12, pp. 7478–7487 (2016), DOI: 10.1109/TIE.2016.2594228.
  • [6] Acero J., Carretero C., Lucia O., Alonso R., Burdio J.M., Mutual impedance of small ring-type coils for multiwinding induction heating appliances, IEEE Transactions on Power Electronics, vol. 28, no. 2, pp. 1025–1035 (2013), DOI: 10.1109/TPEL.2012.2205270.
  • [7] Kilic V. T., Unal E., Demir H. V., Coupling and power transfer efficiency enhancement of modular and array of planar coils using in-plane ring-shaped inner ferrites for inductive heating applications, Journal of Applied Physics, vol. 122, no. 1, pp. 014902-1–014902-7 (2017), DOI: 10.1063/1.4992119.
  • [8] Forest F., Faucher S., Gaspard J.Y., Montloup D., Huselstein J. J., Joubert C., Frequency-synchronized resonant converters for the supply of multiwinding coils in induction cooking appliances, IEEE Transactions on Industrial Electronics, vol. 54, no. 1, pp. 441–452 (2007), DOI: 10.1109/TIE.2006.888797.
  • [9] Kilic V. T., Unal E., Yilmaz N., Demir H. V., All-surface induction heating with high efficiency and space invariance enabled by arraying squircle coils in square lattice, IEEE Transactions on Consumer Electronics, vol. 64, no. 3, pp. 339–347 (2018), DOI: 10.1109/TCE.2018.2859627.
  • [10] Liu Y. R., Wang C., Xia D., Yue R., Research on a novel hybrid shielding structure of magnetic coupler for inductive power transfer system, Archives of Electrical Engineering, vol. 70, no. 1, pp. 129–143 (2021), DOI: 10.24425/aee.2021.136057.
  • [11] Kim D., Abu-Siada A., Sutinjo A. T., Application of FRA to improve the design and maintenance of wireless power transfer systems, IEEE Transactions on Instrumentation and Measurement, vol. 68, no. 11, pp. 4313–4325 (2019), DOI: 10.1109/TIM.2018.2889360.
  • [12] Saha C., Anya I., Alexandru C., Jinks R., Wireless power transfer using relay resonators, Applied Physics Letters, vol. 112, no. 26, pp. 263902-1–263902-5 (2018), DOI: 10.1063/1.5022032.
  • [13] Stoecklin S., Yousaf A., Volk T., Reindl L., Efficient wireless powering of biomedical sensor systems for multichannel brain implants, IEEE Transactions on Instrumentation and Measurement, vol. 65, no. 4, pp. 754–764 (2016), DOI: 10.1109/TIM.2015.2482278.
  • [14] Thuan N. V., Kang S. H., Choi J. H., Jung C. W., Magnetic resonance wireless power transfer using three-coil system with single planar receiver for laptop applications, IEEE Transactions on Consumer Electronics, vol. 61, no. 2, pp. 160–166 (2015), DOI: 10.1109/TCE.2015.7150569.
  • [15] Jolani F., Yu Y., Chen Z., A planar magnetically coupled resonant wireless power transfer system using printed spiral coils, IEEE Antennas and Wireless Propagation Letters, vol. 13, pp. 1648–1651 (2014), DOI: 10.1109/LAWP.2014.2349481.
  • [16] Terai H., Sadakata H., Omori H., Yamashita H., Nakaoka M., High frequency soft switching inverter for fluid-heating appliance using induction eddy current-based involuted type heat exchanger, 2002 IEEE 33rd Annual IEEE Power Electronics Specialists Conference Proceedings (Cat. No.02CH37289), Cairns, QLD, Australia, pp. 1874–1878 (2002).
  • [17] Gamage L., Ahmed T., Sugimura H., Chandhaket S., Nakaoka M., Series load resonant phase shifted ZVS-PWM high-frequency inverter with a single auxiliary edge resonant AC load side snubber for induction heating super heated steamer, The Fifth International Conference on Power Electronics and Drive Systems (PEDS 2003), Singapore, Singapore, pp. 30–37 (2003).
  • [18] Bui H. T., Hwang S. J., Modeling a working coil coupled with magnetic flux concentrators for barrel induction heating in an injection molding machine, International Journal of Heat and Mass Transfer, vol. 86, pp. 16–30 (2015), DOI: 10.1016/j.ijheatmasstransfer.2015.02.057.
  • [19] Kilic V. T., Unal E., Demir H. V., High-efficiency flow-through induction heating, IET Power Electronics, vol. 13, no. 10, pp. 2119–2126 (2020), DOI: 10.1049/iet-pel.2019.1609.
  • [20] Mandal N., Kumar B., Sarkar R., Bera S.C., Design of a flow transmitter using an improved inductance bridge network and rotameter as sensor, IEEE Transactions on Instrumentation and Measurement, vol. 63, no. 12, pp. 3127–3136 (2014), DOI: 10.1109/TIM.2014.2326770.
  • [21] Kim Y.S., Yu S.C., Lu H., Lee J.B., Lee H., A class of micromachined magnetic resonator for high-frequency magnetic sensor applications, Journal of Applied Physics, vol. 99, no. 8, pp. 08B309–08B309-3 (2006), DOI: 10.1063/1.2163840.
  • [22] Wei H.Y., Wilkinson A.J., Design of a sensor coil and measurement electronics for magnetic induction tomography, IEEE Transactions on Instrumentation and Measurement, vol. 60, no. 12, pp. 3853–3859 (2011), DOI: 10.1109/TIM.2011.2147590.
  • [23] Saini D. K., Ayachit A., Kazimierczuk M. K., Design and characterisation of single-layer solenoid air-core inductors, IET Circuits, Devices and Systems, vol. 13, no. 2, pp. 211–218 (2019), DOI: 10.1049/iet-cds.2018.5082.
  • [24] Wojda R. P., Kazimierczuk M. K., Winding resistance and power loss of inductors with litz and solidround wires, IEEE Transactions on Industry Applications, vol. 54, no. 4, pp. 3548–3557 (2018), DOI: 10.1109/TIA.2018.2821647.
  • [25] Wojda R. P., Kazimierczuk M. K., Winding resistance of litz-wire and multi-strand inductors, IET Power Electronics, vol. 5, no. 2, pp. 257–268 (2012), DOI: 10.1049/iet-pel.2010.0359.
  • [26] Kazimierczuk M. K., High-frequency magnetic components, Wiley (2009).
  • [27] Snelling E. C., Soft ferrites, properties and applications, Iliffe Books (1969).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1edfe718-9626-45be-920d-3624df189d50
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.