Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The accuracy of the available from the literature models for the dew point temperature determination was compared. The proposal of the modelling using artificial neural networks was also given. The experimental data were taken from the psychrometric tables. The accuracies of the models were measured using the mean bias error MBE, root mean square error RMSE, correlation coefficient R, and reduced chi-square χ2 . Model M3, especially with constants A=237, B=7.5, gave the best results in determining the dew point temperature (MBE: -0.0229 – 0.0038 K, RMSE: 0.1259 – 0.1286 K, R=0.9999, χ2 : 0.0159 – 0.0166 K2 ). Model M1 with constants A=243.5, B=17.67 and A=243.3, B=17.269 can be also considered as appropriate (MBE=-0.0062 and -0.0078 K, RMSE=0.1277 and 0.1261 K, R=0.9999, χ2 =0.0163 and 0.0159 K2 ). Proposed ANN model gave the good results in determining the dew point temperature (MBE=-0.0038 K, RMSE=0.1373 K, R=0.9999, χ2 =0.0189 K2 ).
Słowa kluczowe
Rocznik
Tom
Strony
241–--257
Opis fizyczny
Bibliogr. 52 poz., rys., tab., wykr.
Twórcy
autor
- Katedra Podstaw Inżynierii, Wydział Inżynierii Produkcji, Szkoła Główna Gospodarstwa Wiejskiego, ul. Nowoursynowska 164, 02-787 Warszawa
autor
- Faculty of Production Engineering, Warsaw University of Life Sciences
autor
- Faculty of Production Engineering, Warsaw University of Life Sciences
autor
- Faculty of Production Engineering, Warsaw University of Life Sciences
Bibliografia
- AGHBASHLO M, KIANMEHR M.H, NAZGHELICHI T, RAFIEE S. 2011. Optimization of an artificial neural network topology for predicting drying kinetics of carrot cubes using combined response surface and genetic algorithm. Drying Technology, 29: 770–779.
- AJ Design Software. Science Math Physics Engineering And Finance Calculators. Dew Point Equations Formulas Calculator. Meteorology Weather Water Vapor. http://www.ajdesigner.com/phphumidity/dewpoint–equation–dewpoint–temperature.php (access: 5.05.2016).
- AMIRMOJAHEDI M., MOHAMMADI K., SHAMSHIRBAND S., DANESH A.S., MOSTAFAEIPOUR A., KAMSIN A. 2016. A hybrid computational intelligence method for predicting dew point temperature. Environmental Earth Sciences, 75: 415.
- ASHRAE Handbook-Fundamentals. 1993. ASHRAE, Atlanta, GA.
- BOHREN C., ALBRECHT B. 1998. Atmospheric Thermodynamics. Oxford University Press, p. 402.
- BOSEN J.F. 1958. An approximation formula to compute relative humidity from dry bulb and dew point temperatures. Monthly Weather Review, 86(12): 486.
- BROOKER D.B., BARKER-ARKEMA F.W., HALL C.W. 1992. Drying and storage of grains and oilseeds. AVIBook, New York.
- CUI B., ZHU Y. Section 6: Bias correction and statistical down-scaling for 2-meter dew-point temperature and relative humidity. National Weather Service. Environmental Modeling Center. http://www.emc.ncep.noaa.gov/gmb/yzhu/imp/i201204/NAEFS–Science–Documentation.pdf (access: 5.05.2016).
- EZFREMOV G. 2013. Describing of generalized drying kinetics with application of experiment design method. Technical Sciences, (16)4: 309–322.
- ERB R.J. 1993. Introduction to backpropagation neural network computation. Pharmaceutical Research, 10(2): 165–170.
- GERYŁO R. 2008. Powierzchniowa kondensacja pary wodnej. Świat Szkła, 9.
- GOLISZ E., JAROS M., KALICKA M. 2013. Analysis of convectional drying pracess of peach. Technical Sciences, 16(4): 333–343.
- HUBBART K.G., MAHMOOD R., CARLSON C. 2003. Estimating daily dew point temperature for the northern Great Plains using maximum and minimum temperature. Agronomy Journal, 95(2): 323–328.
- Instytut Inżynierii i Gospodarki Wodnej. Politechnika Krakowska. M. Bodziony. Wilgotność powietrza. http://holmes.iigw.pl/~mbodzion/dydaktyka/hydro/pliki/wilgotnosc.pdf (access: 5.05.2016).
- JALAL S., SUNGWON K., OZGUR K. 2014. Estimation of daily dew point temperature using genetic programming and neural networks approaches. Hydrology Research. An International Journal, 45.2: 165–181.
- KALETA A., GÓRNICKI K., WINICZENKO R., CHOJNACKA A. 2013. Evaluation of drying models of apple (var. Ligol) dried in a fluidized bed dryer. Energy Conversion and Management, 67: 179–185.
- KALETA A., GÓRNICKI K., 2010. Some remarks on evaluation of drying models of red beet particles. Energy Conversion and Management, 51(12): 2967–2978.
- KHALAJ G., AZIMZADEGAN T., KHOEINI M., ETAAT M. 2013. Artificial neural networks application to predict the ultimate tensile strength of X70 pipeline steels. wNeural Computing and Applications, 23(7–8): 2301–2308.
- KIM S., SINGH V.P., LEE C.J., SEO Y. 2015. Modeling the physical dynamics of daily dew point temperature using soft computing techniques. KSCE Journal of Civil Engineering, 19(6): 1930–1940.
- LAWRENCE M.G. 2005. The relationship between relative humidity and the dewpoint temperature in moist air. A simple conversion and applications. American Meteorological Society, 2: 225–233.
- LOPES D.C., MELO E.C., MARTINS J.H., GRACIA L.M.N, GUIMARÁES A.C. 2009. Grapsi Draw Digital Psychrometric Chart. In: Computer and Computing Technologies in Agriculture II. Vol. 1. Ed. D. Li, Ch. Zhao. IFIP Advances in Information and Communication Technology, Springer, Boston, p. 519–528.
- Massachusetts Institute of Technology. http://web.mit.edu/weather/info/Frequently–Asked–Questions-temp-dewpoint (access: 5.05.2016).
- MITTAL G.S. 1996. Computerized Control Systems in the Food Industry. CRC Press.
- MITTAL G.S., ZHANG J. 2003. Artificial neural network-based psychrometric predictor. Biosystems Engineering, 85(3): 283–289.
- MOHAMMADI K., SHAMSHIRBAND S., PETKOVIĆ D., YEE P.L., MANSOR Z. 2016. Using ANFIS for selection of more relevant parameters to predict dew point temperature. Applied Thermal Engineering, 96: 311–319.
- NADIG K., POTTER W., HOOGENBOOM G., MCCLENDON R. 2013. Comparison of individual and combined ANN models for prediction of air and dew point temperature. Applied Intelligence, 39(2): 354–366.
- National Weather Service. Environmental Modeling Center. http://www.srh.noaa.gov/images/epz/ wxcalc/rhTdFromWetBulb.pdf (access: 5.05.2016).
- National Weather Service. Environmental Modeling Center. http://www.srh.noaa.gov/images/epz/ wxcalc/wetBulbTdFromRh.pdf (access: 5.05.2016)
- National Oceanic and Atmospheric Administration. National Weather Service. Wet-bulb Temperature and Dewpoint Temperature from Air Temperature and Relative Humidity. http://www.crh.noaa.gov/Image/epz/wxcalc/wetBulbTdFromRh.pdf (access: 5.05.2016).
- NAZGHELICHI T., AGHBASHLO M., KIANMEHR M.H 2011. Optimization of an artificial neural network topology using coupled response surface methodology and genetic algorithm for fluidized bed drying. Computer and Electronics in Agriculture, 75: 84–91.
- NOURBAKHSHA H., EMAM-DJOMEH Z., OMID M., MIRSAEEDGHAZI H., MOINI S. 2014. Prediction of red plum juice permeate flux during membrane processing with ANN optimized using RSM. Computers and Electronics in Agriculture, 102: 1–9.
- OMID M. BAHARLOOEI A., AHMADI H. 2009. Modeling drying kinetics of pistachio nuts with multi-layer feed-forward neural network. Drying Technology, 27: 1069–1077.
- RIANGVILAIKUL B., KUMAR S. 2010a. An experimental study of a novel dew point evaporative cooling system. Energy and Buildings, 42: 637–644.
- RIANGVILAIKUL B., KUMAR S. 2010b. Numerical study of a novel dew point evaporative cooling system. Energy and Buildings, 42: 2241–2250.
- ROJECKI A. 1959. Tablice psychrometryczne. Wyd. 2 poprawione i uzupełnione. Wydawnictwa Komunikacyjne, Warszawa.
- SALWIŃSKI J. 2002. Jak za pomocą higrometru określić termiczność? http://old.szybowce.com/termicznosc.php (access: 5.05.2016).
- SARGENT G.P. 1980. Computation of vapour pressure, dew-point and relative humidity from dry- and wet-bulb temperatures. Meteorological Magazine, 109: 238–246.
- SHANK D.B., HOOGENBOOM G., MCCLENDON R.W. 2008. Dew point temperature prediction using artificial neural networks. Journal of Applied Meteorology and Climatology, 47(6): 1757–1769.
- SHIRI J., KIM S., KISI O. 2014. Estimation of daily dew point temperature using genetic programming and neural networks approaches. Hydrology Research, 45(2): 165–181.
- SHROFF S., DABHI V. 2013a. Dew Point modelling using GEP based multi objective optimization. arXiv preprint arXiv:1304.5594.
- SHROFF S., DABHI V. 2013b. Multiobjective optimization in Gene Expression Programming for Dew Point. arXiv preprint arXiv:1304.5594.
- SIMONS R.E. 2008. Estimating dew point temperature for water cooling applications. Electronics cooling 1. http://www.electronics-cooling.com/2008/05/estimating-dew-point-temperature-forwater-cooling-applications (access: 5.05.2016).
- SINGH A.K., SINGH H., SINGH S.P., SAWHNEY R.L. 2002. Numerical calculation of psychrometric properties on a calculator. Building and Environment, 37: 415–419.
- SNYDER R.L., DE MELO-ABREU J.P. 2005. Frost protection: fundamentals, practice and economics. Vol. 1. Food and Agricultural Organization of the United Nations, Rome.
- SREEKANTH S., RAMASWAMY H.S., SABLANI S. 1998. Prediction of psychrometric parameters using neural networks. Drying Technology, 16(3–5): 825–837.
- WEISS A. 1977. Algorithms for the calculation of moist air properties on hands calculator. Transaction of ASAE, 20: 1133-1136.
- Wikipedia. Wolna Encyklopedia. Temperatura punktu rosy. http://pl.wikipedia.org/wiki/Temperatura–punktu–rosy (access: 5.05.2016).
- WILHELM L.R. 1976. Numerical calculation of psychrometric properties. Transactions of ASAE, 19(2): 318-325.
- WINICZENKO R., GÓRNICKI K., KALETA A., JANASZEK-MAŃKOWSKA M. 2016. Optimisation of ANN topology for predicting the rehydrated apple cubes colour change using RMS and GA. Neural Computing and Applications, 1-15. DOI: 10.1007/s00521-016-2801-y.
- WOOD L.A. 1970. The use of dew-point temperature in humidity calculations. Journal of Research of the National Bureau of Standards – C. Engineering and Instrumentation, 74C(3,4): 117–122.
- ZHAO X., LI J.M., RIFFAT S.B. 2008. Numerical study of a novel counter-flow heat and mass exchanger for dew point evaporative cooling. Applied Thermal Engineering, 28: 1942–1951.
- ZOUNEMAT-KERMANI M. 2012. Hourly predictive Levenberg–Marquardt ANN and multi linear regression models for predicting of dew point temperature. Meteorology and Atmospheric Physics, 117(3–4): 181–192.
Uwagi
Opracowanie w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1edd5d50-5013-48a1-b15a-0134e0068e96