PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Processing of thermographic sequence using Principal Component Analysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper describes application of the principal component analysis in relation to the thermal imaging contrast sequences, recorded with pulse excitation for three different objects. The aim of the study was to demonstrate that thermographic sequences contain an excessive number of data-distorting information about the characteristics of an object and that it is possible to reduce them. It has been shown that PCA can improve SNR, simplifies separation of areas with distinct features and allows determining their count, which is important, inter alia, with infrared image segmentation. The study shows examples of the results for a sequence of infrared registered for thin-layer-chromatography plate (SiO2 on glass) with separated analytes, the high power Si-eutectic-Mo thyristor structure with defects in eutectic, and the Al disk with cavities of different diameter and depth.
Słowa kluczowe
Wydawca
Rocznik
Strony
215--218
Opis fizyczny
Bibliogr. 10 poz., rys., wykr., wzory
Twórcy
autor
  • University of Technology in Koszalin, Faculty of Multimedia Systems and Artificial Intelligence, Śniadeckich St. 2, 75-453 Koszalin, Poland
  • University of Technology in Koszalin, Faculty of Multimedia Systems and Artificial Intelligence, Śniadeckich St. 2, 75-453 Koszalin, Poland
Bibliografia
  • [1] Więcek B., Strzelecki M., Jakubowska T., Wysocki M., Peszyński-Drews C.: Advanced Thermal Image Processing. The Biomedical Engineering Handbook, vol. 2 (Medical devices and systems) pp.28_1-28_13, 2006
  • [2] Arsoba R., Suszyński Z.: Application of Photoacoustic Method and Evolutionary Algorithm for Determination of Thermal Properties of Layered Structure. Journal de Physique, vol. 117, pp. 1-6, 2004.
  • [3] Seidel U., Lan T. T., Heinz-Guenter W., Schmitz B. and others: Quantitative characterization of material inhomogeneities by thermal waves. Society of Photo-Optical Instrumentation Engineers, vol. 36, (376), pp. 376-390, 1997.
  • [4] Suszyński Z., Maliński M., Bychto L.: Thermal Parameters Measurement Method of Electronics Materials. IEEE Trans. On Comp., Pack. And Manufacturing Techn., Part A, vol. 21, no. 3, pp. 424-433, 1998.
  • [5] Ravi J., Lu Y., Longuemart S.: Optothermal depth profiling by neural network infrared radiometry signal recognition. Journal of Applied Physics, 97, 014701, 2005.
  • [6] Dudzik S.: Characterization of material defects using active thermography and an artificial neural network. Metrology & Measurement Systems, vol. XX, no. 3, pp. 491-500, 2013.
  • [7] Majchrzak P., Suszyński Z.: New Approach in Analysis of Sensitivity of Temperature Response to Selected Parameters of Two-Layer Structure. International Journal of Thermophysics, vol. 32, pp. 836-843, 2010.
  • [8] Rajic N.: Principal component thermography for flaw contrast enhancement and flaw depth characterization in composite structures. Composite Structures, vol. 58, pp. 521-8, 2002.
  • [9] Demmel J., Kahan W.: Accurate singular values of bidiagonal matrices. Society for Industrial and Applied Mathematics. Journal on Scientific and Statistical Computing 11 (5), pp. 873–912, 1990.
  • [10] Suszyński Z., Zarzycki P.K.: New approach for sensitive photothermal detection of C60 and C70 fullerens on micro-thin-layer chromatographic plates. Analitica Chimica Acta, vol. 863, pp. 70-77, 2015.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1edd05b8-8c66-4c25-874a-6e3593dc6b97
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.