Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Knowledge of interfering noise is necessary for the correct design of a public address system. Noise sound levels can be obtained, for example, from BS 5389-1. It is more difficult to acquire knowledge of the interfering noise spectra, and the spectrum is also important for calculating speech intelligibility. As shown in the paper, for crowd noise, it is possible to determine the spectrum by pairing the level of noise to the speech spectrum for appropriate vocal effort. The error in determining the speech transmission index for public address systems for such selected noise spectra, relative to values for measurement-acquired noise spectra, is acceptable.
Rocznik
Tom
Strony
609--614
Opis fizyczny
Bibliogr. 31 poz., rys.
Twórcy
Bibliografia
- [1] IEC 60268-16:2020, “Sound system equipment - Part 16: Objective rating of speech intelligibility by speech transmission index”, 2020.
- [2] CEN/TS 54-32:2015, “Fire detection and fire alarm systems - Planning, design, installation, commissioning, use and maintenance of voice alarm systems”, 2015.
- [3] BS 5839-1:2017, “Fire detection and fire alarm systems for buildings. Part 1: Code of practice for design, installation, commissioning and maintenance of systems in non-domestic premises”, 2017.
- [4] P. Dziechciński, “Effect of Power Amplifier Distortion on the Speech Transmission Index for Public Address Systems”, Archives of Acoustics, vol. 47, no. 2, 2022. https://doi.org/10.24425/aoa.2022.141649.
- [5] P. Dziechciński, “Effect of highpass filtering on the speech transmission index”, Vibrations in Physical Systems, vol. 33, no. 3, 2022.
- [6] N. R. French, J. Steinberg, “Factors Governing the Intelligibility of Speech Sounds”, The Journal of the Acoustical Society of America, vol. 19, no. 1, pp. 90-119, 1947. https://doi.org/10.1121/1.1916407.
- [7] T. Houtgast, H. J. M. Steeneken, “The Modulation Transfer Function in Room Acoustics as a Predictor of Speech Intelligibility”, Acta Acustica united with Acustica, vol. 28, no. 1, pp. 66-73, 1973. https://doi.org/10.1121/1.2016789.
- [8] S. Brachmański, “Estimation of logatom intelligibility with the STI method for Polish speech transmitted via communication channels”, Archives of Acoustics, vol. 29, no. 4, pp. 555-562, 2004.
- [9] M. Hodgson, R. Rempel, S. Kennedy, “Measurement and prediction of typical speech and background-noise levels in university classrooms during lectures”, The Journal of the Acoustical Society of America, vol. 105, no. 1, pp. 226-233, 1999. https://doi.org/10.1121/1.424600.
- [10] P. E. Braat-Eggen, A. van Heijst, M. Hornikx, A. Kohlrausch, “Noise disturbance in open plan study environments a field study on noise sources student tasks and room acoustic parameters”, Ergonomics, vol. 60, no. 9, pp. 1297-1314, 2017. https://doi.org/10.1080/00140139.2017.1306631.
- [11] D. Engard, “Noise exposure, characterization, and comparison of three football stadiums”, MSc Thesis, Colorado State University, Department of Environmental and Radiological Health Sciences, 2009.
- [12] N. Jathar, P. Rao, “Acoustic characteristics of critical message utterances in noise applied to speech intelligibility enhancement”, in Proc. 15th Annual Conference of the International Speech Communication Association, INTERSPEECH 2014, Singapore, pp. 2665-2669, 2014.
- [13] H. Liu, H. Ma, C. Wang, J. Kang, „Prediction model of crowd noise in large waiting halls”, The Journal of the Acoustical Society of America, vol. 152, no. 4, pp. 2001-2012, 2022. https://doi.org/10.1121/10.0014347.
- [14] ISO 9921:2003, “Ergonomics — Assessment of speech communication”, 2003.
- [15] H. Lazarus, “Prediction of Verbal Communication is Noise— A review: Part 1”, Applied Acoustics, vol. 19, no. 6, pp. 439-464, 1986. https://doi.org/10.1016/0003-682X(86)90039-3.
- [16] ANSI/ASA S3.5-1997 (R2020), “Methods For Calculation Of The Speech Intelligibility Index”, 2020.
- [17] K. S. Pearson, R. L. Bennett, S. A. Fidell, “Speech Levels in Various Noise Environments”, Office of Health and Ecological Effects, Office of Research and Development US EPA, Washington, 1977.
- [18] I. R. Cushing, F. F. Li, T. J. Cox, K. Worrall, T. Jackson, “Vocal effort levels in anechoic conditions”, Applied Acoustics, vol. 72, no. 9, 2011. https://doi.org/10.1016/j.apacoust.2011.02.011.
- [19] D. Byrne, et al., “An international comparison of long-term average speech spectra”, The Journal of the Acoustical Society of America, vol. 96, no. 4, 1994. https://doi.org/10.1121/1.410152.
- [20] W. Jassem, M. Steffen, B. Piela, “Average spectra of Polish speech”, In Proceedings of Vibration Problems, vol. 2, pp. 59–71, 1959.
- [21] W. Majewski, H. B. Rothman, H. Holien, “Acoustic comparisons of American English and Polish”, Journal of Phonetics, vol. 5, no. 3, pp. 247-251, 1977. https://doi.org/10.1016/S0095-4470(19)31138-6.
- [22] ISO 3382-3:2022, “Acoustics — Measurement of room acoustic parameters — Part 3: Open plan offices”, 2022.
- [23] BB93, “Guidance on computer prediction models to calculate the Speech Transmission Index for BB93”, Version 1.0, Department for Education and Skills, Schools Capital and Building Division, 2004.
- [24] ITU-T P.50, “Artificial voices”, 1999.
- [25] S. H. Cha, “Comprehensive survey on distance/similarity measures between probability density functions”, International Journal of Mathematical Models and Methods in Applied Sciences, vol. 1, no. 4, pp. 300-307, 2007.
- [26] S. J. van Wijngaarden, R. Atsma, “Ambient noise inside airport terminals: a detailed survey of the background noise at Amsterdam Airport Schiphol”, in Proc. InterNoise 2020, Seoul, pp. 1588-1595, 2020.
- [27] I. Wilson, “Improving Intelligibility of Airport Terminal Public Address Systems”, The National Academies Press, Washington, 2017. https://doi.org/10.17226/24839.
- [28] T. Wohni, “Method for classification of restaurant acoustics”, MSc Thesis, Norwegian University of Science and Technology, Department of Electronic Systems, 2018.
- [29] J. H. Rindel, C. L. Christensen, A.C. Gade, “Dynamic sound source for simulating the Lombard effect in room acoustic modelling software”, in Proc. InterNoise 2012, New York, 2012.
- [30] P. Mapp, R. Hammond, “The effects of spectators on the speech intelligibility performance of sound systems in stadia and other large venues”, in Proc. Audio Engineering Society 147th Convention, New York, preprint 10267, 2019.
- [31] L. Morales, G. Leembruggen, S. Dance, B. M. Shield, “A revised speech spectrum for STI calculations”, Applied Acoustics, vol. 132, pp. 33-42, 2018. https://doi.org/10.1016/j.apacoust.2017.11.008.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1ed00831-69ba-413a-b1f1-cf6bd29ee41d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.