PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fluid–structure interaction vibration experiments and numerical verification of a real marine propeller

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The design of lifting blade shapes is a key engineering application, especially in domains such as those of marine propellers, hydrofoils, and tidal energy converters. In particular, the excitation frequency must be different from that of the structure to avoid resonance. The natural frequency in the cases where the fluid–structure interaction (FSI) is considerably different if considering the coupling added mass (AM) of the water. In this study, vibration experiments were performed using a real propeller in air and water. The modal parameters, natural frequencies, and mode shapes were determined. Validations were performed using 3D solid and acoustic elements in a direct coupling finite element format. The modal results and AM ratios were in agreement with the experimental results. Convenient application and high efficiency are basic requirements for an engineering application. Therefore, an empirical formula was established for the first-order FSI natural frequency to enable rapid estimation, thereby satisfying this requirement.
Rocznik
Tom
Strony
61--75
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
autor
  • Jiangsu University of Science and Technology, Changhui Road, Number 666, Changhui Road, 212003 Zhenjiang China
autor
  • Dalian University of Technology, Linggong Road, Number 2, Ganjingzi District, 116081,Dalian China
Bibliografia
  • 1. J. Carlton, “Marine propellers and propulsion, 2nd ed.,” Butterworth-Heinemann, Oxford, 2012.
  • 2. P. Król, “Hydrodynamic State of Art Review: Rotor–Stator Marine Propulsor Systems Design,” Polish Marit. Res. 28 (1) (2021), 72–82. https://doi.org/10.2478/pomr-2021-0007
  • 3. L.C. Burrill, “Marine propeller blade vibrations: full scale tests,” Trans. NECIES, 1946, 62.
  • 4. L.C. Burrill and W. Robson, “Virtual mass and moment of inertia of propellers,” Trans. NECIES, 1962, 78.
  • 5. M.G. Parsons, W.S. Vorus, and E.M. Richard, “Added mass and damping of vibrating propellers,” Technical Report, University of Michigan, 1980.
  • 6. S. Hyloarides and W. Van Gent, “Hydrodynamic reactions to propeller vibrations,” in: Schip en Werf, 1979, 46.
  • 7. H. Shen, D. Zhao, and Z. Luo, “Solution to eigenvalues of fluid-solid coupling vibration problem,” J. Dalian Univ. Technol. 30 (3) (1990), 369–371. (In Chinese)
  • 8. Z. Zheng, D. Zhao, and G. Wang, “Fluid-structure coupling kinetic analysis of propellers,” J. Dalian Univ. Technol., 36 (1996), 199–223. (In Chinese)
  • 9. J. Xiong, D. Zhao, and J. Ma, “Dynamic analysis of propeller blades,” J. Dalian Univ. Technol. 40 (2000), 737–740. (In Chinese)
  • 10. A. Korotkin, “Added masses of ship structures (Vol. 88),” Springer Science & Business Media, 2008.
  • 11. H. Ghassemi and E. Yari, “The added mass coefficient computation of sphere, ellipsoid and marine propellers using boundary element method,” Polish Marit. Res. 18 (2011), 17–26. https://doi.org/10.2478/v10012-011-0003-1
  • 12. P. Castellini and C. Santolini, “Vibration measurements on blades of a naval propeller rotating in water with tracking laser vibrometer,” Measurement 24 (1998), 43–54. https://doi.org/10.1016/S0263-2241(98)00044-X.
  • 13. S.H. Abbas, J.K. Jang, D.H. Kim, and J.R. Lee, “Underwater vibration analysis method for rotating propeller blades using laser Doppler vibrometer,” Opt. Laser Eng. 132 (2020), 106133. https://doi.org/10.1016/j. optlaseng.2020.106133
  • 14. L. Guangnian, Q. Chen, and Y. Liu, “Experimental study on dynamic structure of propeller tip vortex,” Polish Marit. Res. 27 (2) (2020), 11–18. https://doi.org/10.2478/ pomr-2020-0022
  • 15. G. Vaz, D. Hally, T. Huuva, N. Bulten, P. Muller, P. Becchi, J.L. Herrer, S. Whitworth, R. Macé, and A. Korsström, “Cavitating flow calculations for the E779A propeller in open water and behind conditions: code comparison and solution validation,” in Proceedings of the Fourth International Symposium on Marine Propulsors (SMP) 15 (2015), 344–360.
  • 16. H. Nouroozi and H. Zeraatgar, “Propeller hydrodynamic characteristics in oblique flow by unsteady RANSE solver,” Polish Marit. Res. 27 (1) (2020), 6–17. https://doi. org/10.2478/pomr-2020-0001
  • 17. A. Nadery and H. Ghassemi, “Numerical investigation of the hydrodynamic performance of the propeller behind the ship with and without Wed,” Polish Marit. Res. 27 (4) (2020), 50–59. https://doi.org/10.2478/pomr-2020-0065
  • 18. Y. Zhang, X.P. Wu, M.Y. Lai, G.P. Zhou, and J. Zhang, “Feasibility study of RANS in predicting propeller cavitation in behindhull conditions,” Polish Marit. Res. 27 (4) (2020), 26–35. https://doi.org/10.2478/pomr-2020-0063
  • 19. J.F. Sigrist, “Fluid‒structure interaction: an introduction to finite element coupling,” John Wiley & Sons, West Sussex, United Kingdom, 2015.
  • 20. Z. Suo and R. Guo, “Hydroelasticity of rotating bodies— theory and application,” Marine Struct. 9 (1996), 631–646. https://doi.org/10.1016/0951-8339(95)00010-0
  • 21. H. Lin and J. Lin, “Nonlinear hydroelastic behavior of propellers using a finite element method and lifting surface theory,” J. Mar. Sci. Technol. 1 (1996), 114. https://doi. org/10.1007/BF02391167
  • 22. D. Zou, J. Zhang, N. Ta, Z. Rao, “The hydroelastic analysis of marine propellers with consideration of the effect of the shaft,” Ocean Eng. 131 (2017), 95–106. https://doi. org/10.1016/j.oceaneng.2016.12.032
  • 23. J. Li, Y. Qu, H. Hua, “Hydroelastic analysis of underwater rotating elastic marine propellers by using a coupled BEMFEM algorithm,” Ocean Eng. 146 (2017), 178–191. https:// doi.org/10.1016/j.ocean eng.2017.09.028
  • 24. Y. Young, “Time-dependent hydroelastic analysis of cavitating propulsors,” J. Fluid. Struct. 23 (2007), 269–295. http://dx.doi.org/10.1016/j.jfluidstructs.2006.09.003.
  • 25. Y. Young, “Fluid-structure interaction analysis of flexible composite marine propellers,” J. Fluid. Struct. 24 (2008), 799–818. http://dx.doi.org/10.1016/j. jfluidstructs.2007.12.010.
  • 26. X. He, Y. Hong, and R. Wang, “Hydroelastic optimisation of a composite marine propeller in a non-uniform wake,” Ocean Eng. 39 (2012), 14–23, http://dx.doi.org/10.1016/j. oceaneng.2011.10.007.
  • 27. H. Lee, M.C. Song, J.C. Suh, B.J. Chang, “Hydro-elastic analysis of marine propellers based on a BEM-FEM coupled FSI algorithm,” Int. J. Nav. Archit. Ocean Eng. 6 (2014), 562–577. http://dx.doi.org/10.2478/IJNAOE-2013-0198.
  • 28. J. Neugebauer, M. Abdel-Maksoud, and M. Braun, “Fluidstructure interaction of propellers,” in IUTAM Symposium on Fluid‒Structure Interaction in Ocean Engineering 2008, (pp. 191‒204). Springer, Dordrecht.
  • 29. S. Kapuria and H. Das, “Improving hydrodynamic efficiency of composite marine propellers in off-design conditions using shape memory alloy composite actuators,” Ocean Eng. 168 (2018), 185–203. https://doi.org/10.1016/j. oceaneng.2018.09.001
  • 30. D.M. MacPherson, V.R. Puleo, and M.B. Packard, “Estimation of entrained water added mass properties for vibration analysis,” SNAME New England Section, 2007.
  • 31. J. Xing, “Natural vibration of two-dimensional slender structure–water interaction systems subject to Sommerfeld radiation condition,” J. Sound Vib. 308 (2007), 67–79. https://doi.org/10.1016/j.jsv.2007.07.009
  • 32. O.C. Zienkiewicz and R.L. Taylor, “The finite element method: solid mechanics,” Butterworth-Heinemann, Oxford, 2000.
  • 33. X.C. Wang, “Finite element method,” Tsinghua University Press, 2002. (In Chinese)
  • 34. E. Kock and L. Olson, “Fluid-structure interaction analysis by finite element method: a variational approach,” Int. J. Num. Mech. Eng. 31 (1991), 463–491. https://doi. org/10.1002/nme.1620310305
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1ecba6e0-285a-4f7f-a4ab-200c5ceb235c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.