PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Thermal [3+2] cycloaddition reactions as most universal way for the effective preparation of five-membered nitrogen containing heterocycles

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The possibility of the construction of five-membered heterocycles, including single heteroatom or systems with two, three and four heteroatoms were critically reviewed based on the recent reports regarding to the [3+2] cycloaddition reactions. Almost all of analysed reaction are realized with high regio- and stereoselectivity.
Czasopismo
Rocznik
Strony
247--267
Opis fizyczny
Bibliogr. 65 poz., 1 il. kolor., rys.
Twórcy
autor
  • Department of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow (Poland)
  • Department of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow (Poland)
  • Department of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow (Poland)
  • Department of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow (Poland)
  • Department of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow (Poland)
  • Department of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow (Poland)
  • Department of Organic Chemistry and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow (Poland)
Bibliografia
  • [1] Buchner, E.; Einwirkung von diazoessigäther auf die aether ungesättigter säuren. Ber. Dtsch. Chem. Ges. 1890, 23 (1), 701-707. DOI: 10.1002/cber.189002301113
  • [2] Siadati, S.A.; Rezazadeh, S.; The extraordinary gravity of three atom 4π-components and 1,3-dienes to C20-nXn fullerenes: A new gate to the future of nano technology. Sci. Rad. 2022, 1 (1), 46-68. DOI: 10.58332/v22i1a04
  • [3] Huisgen, R.; Cycloadditions - Definition, Classification, and Characterization. Angew. Chem. Int. Ed. Engl. 1968, 7 (5), 321-328. DOI: 10.1002/anie.196803211
  • [4] Huisgen, R.; Kinetics and mechanism of 1,3-dipolr cycloadditions. Angew. Chem. Int. Ed. Engl. 1963, 2 (11), 633-645. DOI: 10.1002/anie.196306331
  • [5] Huisgen, R.; Mlostoń, G.; Langhals, E.; The first two-step 1,3-dipolar cycloadditions: Non-stereospecificity. J. Am. Chem. Soc. 1986, 108 (20), 6401-6402. DOI: 10.1021/ja00280a053
  • [6] Huisgen, R.; Mloston, G.; Langhals, E.; The first two-step 1,3-dipolar cycloadditions: Interception of intermediate. J. Org. Chem. 1986, 51 (21), 4085-4087. DOI: 10.1021/jo00371a039
  • [7] Jasiński, R.; A stepwise, zwitterionic mechanism for the 1,3-dipolar cycloaddition between (Z)-C-4-methoxyphenyl-N-phenylnitrone and gem-chloronitroethene catalysed by 1-butyl-3-methylimidazolium ionic liquid cations. Tetrahedron Lett. 2015, 56 (3), 532-535. DOI: 10.1016/j.tetlet.2014.12.007
  • [8] Jasiński, R.; Competition between one-step and two-step mechanism in polar [3+2] cycloadditions of (Z)-C-(3,4,5-trimethoxyphenyl)-n-methyl-nitrone with (Z)-2-EWG-1-bromo-1-nitroethenes. Comput. Theor. Chem. 2018, 1125, 77-85. DOI: 10.1016/j.comptc.2018.01.009
  • [9] Jasiński, R.; In the searching for zwitterionic intermediates on reaction paths of [3+2] cycloaddition reactions between 2,2,4,4-tetramethyl-3-thiocyclobutanone S-methylide and polymerizable olefins. RSC Adv. 2015, 5 (122), 101045-101048. DOI: 10.1039/C5RA20747A
  • [10] Domingo, L.R.; Ríos-Gutiérrez, M.; Silvi, B.; Pérez, P.; The mysticism of pericyclic reactions: A contemporary rationalisation of organic reactivity based on Electron Density Analysis. Eur. J. Org. Chem. 2018, 9, 1107-1120. DOI: 10.1002/ejoc.201701350
  • [11] Ríos‐Gutiérrez, M.; Domingo, L.R.; Unravelling the mysteries of the [3+2] cycloaddition reactions. Eur. J. Org. Chem. 2019, 2, 267-282. DOI: 10.1002/ejoc.201800916
  • [12] Domingo, L.R.; Kula, K.; Rios-Gutierrez, M.; Jasinski, R.; Understanding the participation of fluorinated azomethine ylides in carbenoid-type [3+2] cycloaddition reactions with ynal systems: A molecular electron density theory study. J. Org. Chem. 2021, 86 (18), 12644-12653. DOI: 10.1021/acs.joc.1c01126
  • [13] Chastanet, J.; Roussi, G.; Study of the Regiochemistry and stereochemistry of the [3+2] cycloaddition between nonstabilized azomethine ylides generated from tertiary amine N-oxides and various dipolarophiles. J. Org. Chem. 1988, 53 (16), 3808-3812. DOI: 10.1021/jo00251a026
  • [14] Heine, H.W.; Peavy, R.; Aziridines XI. Reaction of 1,2,3-Triphenylaziridine with diethylacetylene dicarboxylate and maleic anhydride. Tetrahedron Lett. 1965, 6 (35), 3123-3126. DOI: 10.1016/S0040-4039(01)89232-7
  • [15] Żmigrodzka, M.; Sadowski, M.; Kras, J.; Desler, E.; Demchuk, O.M.; Kula, K.; Polar [3+2] cycloaddition between N-methyl azomethine ylide and trans-3,3,3-trichloro-1-nitroprop-1-ene. Sci. Rad. 2022, 1 (1), 26-35. DOI: 10.58332/v22i1a02
  • [16] Żmigrodzka, M.; Dresler, E.; Hordyjewicz-Baran, Z.; Kulesza, R.; Jasiński, R.; A unique example of noncatalyzed [3+2] cycloaddition involving (2E)-3-aryl-2-nitroprop-2-enenitriles. Chem. Heterocycl. Comp. 2017, 53 (10), 1161-1162. DOI: 10.1007/s10593-017-2186-6
  • [17] Chornous, V.A.; Mel’nik, O.Ya.; Mel’nik, D.A.; Rusanov, E.B.; Vovk, M.V.; Polyfunctional imidazoles: XI. Reaction of 1-aryl-4-chloro-5-(2-nitrovinyl)-1H-imidazoles with nonstabilized azomethine ylides. synthesis of (1-aryl-4-chloro-1H-imidazol-5-yl)-substituted nitropyrrolidines and nitropyrrolizines. Russ. J. Org. Chem. 2015, 51 (10), 1423-1429. DOI: 10.1134/S1070428015100115
  • [18] Starosotnikov, A.M.; Bastrakov, M.A.; Pechenkin, S.Yu.; Leontieva, M.A.; Kachala, V.V.; Shevelev, S.A.; 1,3-dipolar cycloaddition of unstabilized N-methyl azomethine ylide to nitrobenzene annelated with azoles. J. Heterocycl. Chem. 2011, 48 (4), 824-828. DOI: 10.1002/jhet.599
  • [19] Silva, A.M.G.; Tomé, A.C.; Neves, M.G.P.M.S.; Silva, A.M.S.; Cavaleiro, J.A.S.; 1,3-dipolar cycloaddition reactions of porphyrins with azomethine ylides. J. Org. Chem. 2005, 70 (6), 2306-2314. DOI: 10.1021/jo048349i
  • [20] Kurzer, F.; Fulminic acid in the history of organic chemistry. J. Chem. Educ. 2000, 77 (7), e851. DOI: 10.1021/ed077p851
  • [21] Beltrame, P.; Sartirana, P.; Vintani, C.; Relative rates of the concurrent reactions in the addition of a substituted benzonitrile oxide to arylacetylenes. J. Chem. Soc., 1971, 814-817. DOI: 10.1039/j29710000814
  • [22] Beltrame, P.; Veglio, C.; Simonetta, M.; Kinetics and mechanism of 1,3-cycloaddition of a substituted benzonitrile oxide to a series of arylacetylenes. J. Chem. Soc. 1967, 867-873. DOI: 10.1039/j29670000867
  • [23] Kondo, Y.; Uchiyama, D.; Sakamoto, T.; Yamanaka, H.; Synthesis and reactions of 5-(tributylstannyl)isoxazoles. Tetrahedron Lett. 1989, 30 (32), 4249-4250. DOI: 10.1016/S0040-4039(01)80702-4
  • [24] Zawadzińska, K.; Ríos-Gutiérrez, M.; Kula, K.; Woliński, P.; Mirosław, B.; Krawczyk, T.; Jasiński, R.; The participation of 3,3,3-trichloro-1-nitroprop-1-ene in the [3+2] cycloaddition reaction with selected nitrile N-oxides in the light of the experimental and MEDT quantum chemical study. Molecules 2021, 26 (22), e6774. DOI: 10.3390/molecules26226774
  • [25] Zawadzińska, K.; Kula, K.; Application of β-phosphorylated nitroethenes in [3+2] cycloaddition reactions involving benzonitrile N-oxide in the light of a DFT computational study. Organics 2021, 2 (1), 26-37. DOI: 10.3390/org2010003
  • [26] Tanaka, J.; Kanemasa, S.; Ab initio study of lewis acid catalyzed nitrone cycloaddition to electron deficient alkenes. Does a lewis acid catalyst change the reaction mechanism? Tetrahedron 2001, 57 (5), 899-905. DOI: 10.1016/S0040-4020(00)01045-0
  • [27] Komaromi, I.; Tronchet, J.M.J.; Geometry and electronic structure of model small nitrones and their tautomers. J. Mol. Struct. 1996, 366 (3), 147-160. DOI: 10.1016/0166-1280(96)04584-8
  • [28] Sustmann, R.; Sicking, W.; Huisgen, R.; The high reactivity of the CS double bond in 1,3-dipolar cycloadditions of nitrones: A molecular orbital theoretical analysis. J. Am. Chem. Soc. 1995, 117 (38), 9679-9685. DOI: 10.1021/ja00143a009
  • [29] Sims, J.; Houk, K.N.; Reversal of nitrone cycloaddition regioselectivity with electron-deficient dipolarophiles. J. Am. Chem. Soc. 1973, 95 (17), 5798-5800. DOI: 10.1021/ja00798a079
  • [30] Zawadzińska, K.; Gadocha, Z.; Pabian, K.; Wróblewska, A.; Wielgus, E.; Jasiński, R.; The first examples of [3+2] cycloadditions with the participation of (E)-3,3,3-tribromo-1-nitroprop-1-ene. Materials 2022, 15 (21), e7584. DOI: 10.3390/ma15217584
  • [31] Jasiński, R.; The question of the regiodirection of the [2+3] cycloaddition reaction of triphenylnitrone to nitroethene. Chem. Heterocycl. Comp. 2009, 45 (6), 748-749. DOI: 10.1007/s10593-009-0318-3
  • [32] Jasiński, R.; Mróz, K.; Kącka, A.; Experimental and theoretical DFT study on synthesis of sterically crowded 2,3,3,(4)5-tetrasubstituted-4-nitroisoxazolidines via 1,3-dipolar cycloaddition reactions between ketonitrones and conjugated nitroalkenes. J. Heterocycl. Chem. 2015, 53 (5), 1424-1429. DOI: 10.1002/jhet.2442
  • [33] Siadati, S.A.; Alinezhad, M.; (2015). A theoretical study on the functionalisation process of C18NB fullerene through its open [5,5] cycloaddition with 4-pyridine nitrile oxide. Prog. React. Kinet. Mech. 2015, 40 (2), 169-176. DOI: 10.3184/146867815X14262612008408
  • [34] Nyerges, M.F.I.; Virányi, A.; Groundwater, P.W.; Töke, L.; A new and convenient synthesis of 1-aryl-2-dimethylaminoethanols. Synthesis 2004, 2001 (10), 1479-1482. DOI: 10.1055/s-2001-16077
  • [35] Orsini, F.; Pelizzoni, F.; Forte, M.; Destro, R.; Gariboldi, P.; 1,3 dipolar cycloadditions of azomethine ylides with aromatic aldehydes. Syntheses of 1-oxapyrrolizidines and 1,3-oxazolidines. Tetrahedron 1988, 44 (2), 519-541. DOI: 10.1016/S0040-4020(01)85842-7
  • [36] Bhat, A.R.; Athar, F.; Azam, A.; New derivatives of 3,5-substituted-1,4,2-dioxazoles: Synthesis and activity against entamoeba histolytica. Eur. J. Med. Chem. 2009, 44 (2), 926-936. DOI: 10.1016/j.ejmech.2008.02.001
  • [37] Couturier, M.; Tucker, J.; Proulx, C.; Boucher, G.; Dubé, P.; Andresen, B.M.; Ghosh, A.; 5,5-dimethyl-1,4,2-dioxazoles as versatile aprotic hydroxamic acid protecting groups. J. Org. Chem. 2002, 67 (14), 4833-4838. DOI: 10.1021/jo0256890
  • [38] Polat-Cakir, S.; 1,3-dipolar cycloaddition reactions of acyl phosphonates with nitrile oxides: synthesis of phosphonate-containing dioxazole derivatives. Phosphorus Sulfur Silicon Relat. Elem. 2021, 196 (5), 461-467. DOI: 10.1080/10426507.2020.1854259
  • [39] Bouhfid, R.; Joly, N.; Essassi, E.M.; Lequart, V.; Massoui, M.; Martin, P.; Synthesis of new spiro[1,4,2-dioxazole-5,3′-indolin]-2′-one by 1,3-dipolar cycloaddition. Synth. Commun. 2011, 41 (14), 2096-2102. DOI: 10.1080/00397911.2010.497595
  • [40] Pechmann, H.V.; Pyrazol aus acetylen und diazomethan. Ber. Dtsch. Chem. Ges. 1898, 31 (3), 2950-2951. DOI: 10.1002/cber.18980310363
  • [41] Huisgen, R.; Koszinowski, J.; Ohta, A.; Schiffer, R.; Cycloadditions of diazoalkanes to 1-alkenes. Angew. Chem. Int. Ed. Engl. 1980, 19 (3), 202-203. DOI: 10.1002/anie.198002021
  • [42] Kula, K.; Łapczuk, A.; Sadowski, M.; Kras, J.; Zawadzińska, K.; Demchuk, O.M.; Gaurav, G.K.; Wróblewska, A.; Jasiński, R.; (2022). On the question of the formation of nitro-functionalized 2,4-pyrazole analogs on the basis of nitrylimine molecular systems and 3,3,3-trichloro-1-nitroprop-1-ene. Molecules 2022, 27 (23), e8409. DOI: 10.3390/molecules27238409
  • [43] Sadowski, M.; Utnicka, J.; Wójtowicz, A.; Kula, K. The global and local reactivity of C,N-diarylnitryle imines in [3+2] cycloaddition processes with trans-β-nitrostyrene according to Molecular Electron Density Theory: A computational study. Curr. Chem. Lett. 2023, 12 (2), 421-430. DOI: 10.5267/j.ccl.2022.11.004
  • [44] Kula, K.; Dobosz, J.; Jasiński, R.; Kącka-Zych, A.; Łapczuk-Krygier, A.; Mirosław, B.; Demchuk, O.M.; [3+2] cycloaddition of diaryldiazomethanes with (e)-3,3,3-trichloro-1-nitroprop-1-ene: An experimental, theoretical and structural study. J. Mol. Struct. 2020, 1203 e127473. DOI: 10.1016/j.molstruc.2019.127473
  • [45] Tang, D.; Wu, P.; Liu, X.; Chen, Y.-X.; Guo, S.-B.; Chen, W.-L.; Li, J.-G.; Chen, B.-H.; Synthesis of multisubstituted imidazoles via copper-catalyzed [3+2] cycloadditions. J. Org. Chem. 2013, 78 (6), 2746-2750. DOI: 10.1021/jo302555z
  • [46] Dresler, E.; Wróblewska, A.; Jasiński, R.; Understanding the regioselectivity and the molecular mechanism of [3+2] cycloaddition reactions between nitrous oxide and conjugated nitroalkenes: A DFT computational study. Molecules 2022, 27 (23), e8441. DOI: 10.3390/molecules27238441
  • [47] Bridson-Jones, F.S.; Buckley, G.D.; Cross, L.H.; Driver, A.P.; 666. Oxidation of organic compounds by nitrous oxide. Part I. J. Chem. Soc. 1951, 2999-3008. DOI: 10.1039/jr9510002999
  • [48] Banert, K.; Plefka, O.; Synthesis with perfect atom economy: Generation of diazo ketones by 1,3-dipolar cycloaddition of nitrous oxide at cyclic alkynes under mild conditions. Angew. Chem. Int. Ed. 2011, 50 (27), 6171-6174. DOI: 10.1002/anie.201101326
  • [49] Woliński, P.; Kącka-Zych, A.; Demchuk, O.M.; Łapczuk-Krygier, A.; Mirosław, B.; Jasiński, R.; Clean and molecularly programmable protocol for preparation of bis-heterobiarylic systems via a domino pseudocyclic reaction as a valuable alternative for TM-catalyzed cross-couplings. J. Clean. Prod. 2020, 275, e122086. DOI: 10.1016/j.jclepro.2020.122086
  • [50] Wagner, G.; Pombeiro, A.J.L.; Kukushkin, V.Yu.; Platinum(IV)-assisted [2+3] cycloaddition of nitrones to coordinated organonitriles. synthesis of Δ4-1,2,4-oxadiazolines. J. Am. Chem. Soc. 2000, 122 (13), 3106-3111. DOI: 10.1021/ja993564f
  • [51] Wagner, G.; Haukka, M.; Fraústo Da Silva, J.J.R.; Pombeiro, A.J.L.; Kukushkin, V.Yu.; [2+3] cycloaddition of nitrones to platinum-bound organonitriles: Effect of metal oxidation state and of nitrile substituent. Inorg. Chem. 2001, 40 (2), 264-271. DOI: 10.1021/ic000477b
  • [52] Shimizu, N.; Bartlett, P.D.; Cycloaddition of diazoalkanes to penta- and hexafluoroacetones. Isolation of Δ3-1,3,4-oxadiazolines and their decomposition via carbonyl ylides. J. Am. Chem. Soc. 1978, 100 (13), 4260-4267. DOI: 10.1021/ja00481a042
  • [53] Ohshiro, Y.; Komatsu, M.; Okamura, A.; Agawa, T.; Cycloaddition of vinyl isocyanate to 1,3-dipoles. Bull. Chem. Soc. Jpn. 1984, 57 (3), 901-902. DOI: 10.1246/bcsj.57.901
  • [54] Hisano, T.; Harano, K.; Fukuoka, R.; Matsuoka, T.; Muraoka, K.; Shinohara, I.; Reaction of aromatic N-oxides with dipolarophiles. XI 1,3-dipolar cycloaddition reaction of pyridine n-oxides with tosyl isocyanate and one-pot synthesis of 2-oxooxazolo(4,5-b)-pyridine derivatives. Chem. Pharm. Bull. 1986, 34 (4), 1485-1492. DOI: 10.1248/cpb.34.1485
  • [55] Beltrame, P.; Vintani, C.; Kinetics and mechanism of 1,3-cycloaddition of a substituted benzonitrile oxide to N-sulphinylanilines. J. Chem. Soc. 1970, 873-876. DOI: 10.1039/j29700000873
  • [56] Pokhodylo, N.T.; Tupychak, M.A.; Shyyka, O.Ya.; Obushak, M.D.; Some aspects of the azide-alkyne 1,3-dipolar cycloaddition reaction. Russ. J. Org. Chem. 2019, 55 (9), 1310-1321. DOI: 10.1134/S1070428019090082
  • [57] Abu-Orabi, S.T.; Atfah, M.A.; Jibril, I.; Mari’i, F.M.; Ali, A.A.-S.; Dipolar cycloaddition reactions of organic azides with some acetylenic compounds. J. Heterocycl. Chem. 1989, 26 (5), 1461-1468. DOI: 10.1002/jhet.5570260541
  • [58] Cailleux, P.; Piet, J.C.; Benhaoua, H.; Carrié, R.; Cycloaddition des méthylazide et phénylazide au β-nitrostyrène et au nitropropène homologue. Bull. Soc. Chim. Belg. 2010, 105 (1), 45-51. DOI: 10.1002/bscb.19961050108
  • [59] Wang, Y.-C.; Xie, Y.-Y.; Qu, H.-E.; Wang, H.-S.; Pan, Y.-M.; Huang, F.-P.; Ce(OTf)3 -catalyzed [3+2] cycloaddition of azides with nitroolefins: regioselective synthesis of 1,5-disubstituted 1,2,3-triazoles. J. Org. Chem. 2014, 79 (10), 4463-4469. DOI: 10.1021/jo5004339
  • [60] Rengasamy, R.; Vijayalakshmi, K.; Punitha, N.; Raj, J.P.; Karthikeyan, K.; Elangovan, J.; A novel route to 1,4-disubstituted-1,2,3-triazoles through metal-free decarboxylative azide-alkene cycloaddition. Tetrahedron Lett. 2021, 84, 153440. DOI: 10.1016/j.tetlet.2021.153440
  • [61] Fuchs, E.P.O.; Hermesdorf, M.; Schnurr, W.; Rösch, W.; Heydt, H.; Regitz, M.; Binger, P.; Ungewöhnlich koordinierte Phosphorverbindungen. J. Organomet. Chem. 1988, 338 (3), 329-340. DOI: 10.1016/0022-328X(88)80006-8
  • [62] Carpenter, W.R.; The formation of tetrazoles by the condensation of organic azides with nitriles. J. Org. Chem. 1962, 27 (6), 2085-2088. DOI: 10.1021/jo01053a043
  • [63] Sarvary, A.; Khosravi, F.; Ghanbari, M.; Synthesis of fused 1,5-disubstituted tetrazoles via a one-pot knoevenagel condensation/nucleophilic substitution/intramolecular /intermolecular [3+2] cycloaddition reaction. Monatsh. Chem. 2018, 149 (1), 39-45. DOI: 10.1007/s00706-017-2062-1
  • [64] Kröckert, B.; Van Bonn, K.-H.; Paetzold, P.; The Iminoborane tBuB≡NtBu as a dipolarphile in (2+3) cycloadditions. Z. anorg. allg. Chem. 2005, 631 (5), 866-868. DOI: 10.1002/zaac.200500010
  • [65] Jasiński, R.; Dresler, E.; On the question of zwitterionic intermediates in the [3+2] cycloaddition reactions: A critical review. Organics 2020, 1 (1), 49-69. DOI: 10.3390/org1010005
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1eca5b9e-1b4e-45a8-8afe-37f2df00c722
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.