PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fracture Surface Topography Parameters for S235JR Steel Adhesive Joints After Fatigue Shear Testing

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the experimental results of a study investigating the effect of holes and notches made on the overlap ends on the strength of adhesive joints. Single-lap joints made of S235JR steel sheets bonded with Araldite 2024-2 epoxy adhesive were tested. For comparative reasons, static shear strength tests and high-cycle fatigue strength tests were performed. Adhesive-filled joints having three holes, each with a diameter of 3 mm, and notches, each 3 mm wide and 4 mm long, were tested and compared with reference joints, i.e. without modification. The assumption was to determine whether the structural modifications would reduce the peak peel and shear stresses that are typical of this type of joints. Results of the static strength tests showed no significant effect of the applied modifications on the strength of the joints. However, in terms of fatigue strength, the results demonstrated a significant improvement in fatigue life, the value of which increased in the low-cycle fatigue region by 328.6% for the joint with notches and by 640.8% for the joint with holes. A smaller yet still positive effect of the applied modifications was shown for high-cycle fatigue. For a variable load with the maximum value of 9 MPa, the fatigue life increased by 215.9% for the variant with notches and by 183.3% for the variant with holes. Surface topography of fatigue fractures was examined by determining roughness parameters on the overlap ends in the samples. Significant differences were shown, with the selected roughness parameters being significantly lower for the reference variant than for the variants with notches and holes. It was shown that the applied structural modifications led to increasing the fatigue strength to 8.5 MPa for the limit number of cycles equal to 2×106, when compared to the reference variant for which the fatigue strength was 8 MPa.
Twórcy
  • Department of Manufacturing and Production Engineering, Rzeszow University of Technology, al. Powst. Warszawy 8, 35-959 Rzeszów, Poland
  • Faculty of Mechanical Engineering and Ship Technology, Gdańsk University of Technology, ul. Gabriela Narutowicza 11/12 , 80-233 Gdańsk, Poland
  • Department of Manufacturing and Production Engineering, Rzeszow University of Technology, al. Powst. Warszawy 8, 35-959 Rzeszów, Poland
  • Department of Materials Forming and Processing, Rzeszow University of Technology, al. Powst. Warszawy 8, 35-959 Rzeszów, Poland
  • Lublin University of Technology, ul. Nadbystrzycka 38 D, 20-618 Lublin, Poland
Bibliografia
  • 1. da Silva L.F.M., das Neves P.J.C., Adams R.D., et al. Analytical models of adhesively bonded joints – Part I: literature survey. Int. J. Adhes. Adhes., 2009; 29: 319–330.
  • 2. Kadioglu F., Adams R.D. Flexible adhesives for automotive application under impact loading. Int. J. Adhes. Adhes., 2015; 56: 73–78.
  • 3. Davies P, Sohier L, Cognard J-Y, et al. Influence of J. Adhes. Adhes., 2009; 29: 724–736.
  • 4. Karachalios E.F., Adams R.D., da Silva L.F.M. The behaviour of single lap joints under bending loading. J. Adhes. Sci. Technol., 2013; 27: 1811–1827.
  • 5. Bartczak B., Mucha J., Trzepieciński T. Stress distribution in adhesively-bonded joints and the loading capacity of hybrid joints of car body steels for the automotive industry. Int. J. Adhes. Adhes., 2013; 45: 42–52.
  • 6. da Silva L.F.M., das Neves, P.J.C., Adams R.D., Spelt J.K. Analytical models of adhesively bonded joints part I: literature survey. Int. J. Adhesion Adhes., 2008.
  • 7. Wernik JM, Meguid SA. Multiscale micromechanical modelling of the constitutive response of carbon nanotube-reinforced structural adhesives. Int J Solids Struct 2014; 51: 2575–89.
  • 8. Wernik JM, Meguid SA. On the mechanical characterization of carbon nanotube reinforced epoxy adhesives. Mater Des 2014; 59: 19–32.
  • 9. Gkikas G, Sioulas D, Lekatou A, Barkoula NM, Paipetis AS. Enhanced bonded aircraft repair using nanomodified adhesives. Mater Des 2012; 41: 394–402.
  • 10. You M, Yan ZM, Zheng XL, Yu HZ, Li Z. A numerical and experimental study of adhesively bonded aluminium single lap joints with an inner chamfer on the adherends. Int J Adhes Adhes 2008; 28: 71–6.
  • 11. Campilho RDSG, de Moura MFSF, Domingues JJMS. Using a cohesive damage model to predict the tensile behaviour of CFRP single-strap repairs. Int J Solids Struct 2008; 45: 1497–512.
  • 12. Zielecki W., Kubit A., Kluz R., Trzepieciński T. Investigating the influence of the chamfer and fillet on the high-cyclic fatigue strength of adhesive joints of steel parts. 2017; 31(6): 627-644.
  • 13. Belingardi G, Goglio L, Tarditi A. Investigating the effect of spew and chamfer size on the stresses in metal/plastics adhesive joints. Int. J. Adhes. Adhes. 2002; 22: 273–282.
  • 14. You M, Yan Z, Zheng X, Yu H., Li Z. A. A numerical and experimental study of adhesively bonded aluminium single lap joints with an inner chamfer on the adherends. Int. J. Adhes. Adhes. 2007; 28: 71–76.
  • 15. da Silva, L.F.M.; Adams, R.D. Techniques to reduce the peel stresses in adhesive joints with composites. Int. J. Adhes. Adhes. 2007; 27: 227–235.
  • 16. Kaye R, Heller M. Through-thickness shape optimisation of typical double lap-joints including effectsof differential thermal contraction during curing. Int J Adhes Adhes 2005; 25: 227.
  • 17. Ashcroft IA, Abdel Wahab MM, Crocombe AD, Hughes DJ, Shaw SJ. The effect of environment on the fatigue of bonded composite joints. Part I: testing and fractography. Compos Part A Appl Sci 2001; 32: 45–58.
  • 18. Chaves FJP, da Silva LFM, de Castro PMST.adhesive bond line thickness on joint strength. Int. olyvinyl chloride windows. J Mater Des Appl 2008; 222: 159–74.
  • 19. Akpinar, S.; Doru, M.O.; Özel, A.; Aydin, M.D.; Jahanpasand, H.G. The effect of the spew fillet on an adhesively bonded single-lap joint subjected to bending moment. Compos. Part B Eng. 2013; 55: 55–64.
  • 20. Cognard, J.Y.; Creachcadec, R.; Maurice, J. Numerical analysis of the stress distribution in single-lap shear tests under elastic assumption—Application to the optimisation of the mechanical behavior. Int. J. Adhes. Adhes. 2011; 31: 715–724.
  • 21. Hildebrand M. Non-linear analysis and optimisation of adhesively bonded single lap joints between fibre-reinforced plastics and metals. Int J Adhes Adhes Oct. 1994; 14(4): 261–7. https://doi. org/10.1016/0143-7496(94)90039-6.
  • 22. Lang TP, Mallick PK. Effect of spew geometry on stresses in single lap adhesive joints. Int J Adhes Adhes Jun. 1998; 18(3): 167–77. https://doi. org/10.1016/S0143-7496(97)00056-0.
  • 23. Belingardi G, Goglio L, Tarditi A. Investigating the effect of spew and chamfer size on the stresses in metal/plastics adhesive joints. Int J Adhes Adhes Jan. 2002; 22(4): 273–82. https://doi.org/10.1016/ S0143-7496(02)00004-0.
  • 24. Hua Y, Gu L, Trogdon M. Three-dimensional modeling of carbon/epoxy to titanium single-lap joints with variable adhesive recess length. Int J Adhes Adhes Oct. 2012; 38: 25–30. https://doi.org/10.1016/j. ijadhadh.2012.06.003.
  • 25. Fessel G, Broughton JG, Fellows NA, Durodola JF, Hutchinson AR. Evaluation of different lap-shear joint geometries for automotive applications. Int JAdhes Adhes 2007; 27: 574–83.
  • 26. Campilho RDSG,Pinto AMG, Banea MD, Silva RF, da Silva LFM, Strength improvement of adhesively- bonded joints using a reverse-bent geometry, J Adhes Sci Technol, in press.
  • 27. Sancaktar E, Simmons SR. Optimization of adhesively-bonded single lap joints by adherend notching. J Adhes Sci Technol 2000; 14: 1363–404.
  • 28. Yan ZM, You M, Yi XS, Zheng XL, Li Z. A numerical study of parallel slot in adherend on the stress distribution in adhesively bonded aluminium single lap joint. Int J Adhes Adhes 2007; 27: 687–95.
  • 29. ISO - ISO 25178-2:2012 - Geometrical product specifications (GPS) — Surface texture: Areal — Part 2: Terms, definitions and surface texture parameters, (n.d.). https://www.iso.org/standard/42785. html (accessed December 28, 2020).
  • 30. W. Macek, R. Branco, P. Podulka, R. Masoudi Nejad, J.D. Costa, J.A.M. Ferreira, C. Capela, The correla- tion of fractal dimension to fracture surface slope for fatigue crack initiation analysis under bending-torsion loading in high-strength steels, Measurement. 2023; 218: 113169. https://doi.org/10.1016/J. MEASUREMENT.2023.113169.
  • 31. W. Macek, Fractal analysis of the bending-torsion fatigue fracture of aluminium alloy, Eng Fail Anal. 2019; 99: 97–107. https://doi.org/10.1016/j. engfailanal.2019.02.007.
  • 32. Macek W. Correlation between Fractal Dimension and Areal Surface Parameters for Fracture Analysis after Bending-Torsion Fatigue. Metals 2021; 11(11): 1790. https://doi.org/10.3390/met11111790.
  • 33. Macek W., Martins R. F., Branco R., Marciniak Z., Szala M., Wroński S.: Fatigue fracture morphology of AISI H13 steel obtained by additive manufacturing. International Journal of Fracture. 2022; 235: 79– 98. https://doi.org/10.1007/s10704-022-00615-5.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1eca3a2e-d4a3-44a4-8b2b-9d5ad2f827e3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.