Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This study investigated the impact of comfort systems in sport utility vehicles (SUVs) on exhaust emissions and fuel consumption under the worldwide harmonized light vehicles test cycle (WLTC) conditions. Two modern SUVs equipped with gasoline engines of 3.6 and 2.0 liter displacement were tested, both featuring various comfort systems, such as automatic climate control, heated seats, and active safety systems. Measurements were conducted using a chassis dynamometer under three operating modes: with comfort systems off, with comfort systems on, and with comfort systems on in sport mode. The results indicated that the activation of comfort systems leads to significant increases in fuel consumption and emissions, including hydrocarbons (up to 29%), carbon monoxide (up to 42%), and particulate matter (up to 58%). The study highlighted the necessity of conducting further research on the influence of comfort systems on vehicle emissions, particularly as these systems become more prevalent in modern vehicles. Additionally, the research underscored the potential for increased operational costs and environmental impact due to enhanced vehicle comfort features.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
93--105
Opis fizyczny
Bibliogr. 64 poz., rys., tab.
Twórcy
autor
- Poznan University of Technology, ul. Piotrowo 3, 60-695 Poznan, Poland
autor
- Poznan University of Technology, ul. Piotrowo 3, 60-695 Poznan, Poland
autor
- Poznan University of Technology, ul. Piotrowo 3, 60-695 Poznan, Poland
autor
- Poznan University of Technology, ul. Piotrowo 3, 60-695 Poznan, Poland
autor
- Poznan University of Technology, ul. Piotrowo 3, 60-695 Poznan, Poland
autor
- Faculty of Cosmetology, University of Education and Therapy, Grabowa 22, 61‐473 Poznan, Poland
Bibliografia
- 1. Akamatsu M., Green P., and Bengler K. 2013. Automotive technology and human factors research: past, present, and future, Int. J. Veh. Technol., 1–27, doi: 10.1155/2013/526180.
- 2. Pielecha I., Szałek A., and Tchorek G. Jun. 2022. Two generations of hydrogen powertrain—an analysis of the operational indicators in real driving conditions (RDC), Energies, 15(13), 4734, doi:10.3390/en15134734.
- 3. Halin A., Verly J.G., and Van Droogenbroeck M. Aug. 2021. Survey and synthesis of state of the art in driver monitoring, Sensors, 21(16), 5558, doi:10.3390/s21165558.
- 4. Patrone G.L., Paffumi, E., Otura M., Centurelli M., Ferrarese C., Jahn S., Brenner A., Thieringer B., Braun D., Hoffmann T. Feb. 2022. Assessing the energy consumption and driving range of the QUIET project demonstrator vehicle, Energies, 15(4), 1290, doi: 10.3390/en15041290.
- 5. Alanazi F. May 2023. Electric vehicles: benefits, challenges, and potential solutions for widespread adaptation, Appl. Sci., 13(10), 6016, doi: 10.3390/app13106016.
- 6. Nguyen T.A. 2021. Improving the comfort of the vehicle based on using the active suspension system controlled by the double-integrated controller, Shock Vib., 1–11, doi: 10.1155/2021/1426003.
- 7. Pakusch C., Stevens G., Boden A., and Bossauer P. Jul. 2018. Unintended effects of autonomous driving: A study on mobility preferences in the future, Sustainability, 10(7), 2404, doi: 10.3390/su10072404.
- 8. “Eurostat report.” Accessed: Jul. 10, 2023. [Online]. Available: www.ec.europa.eu/eurostat
- 9. Mansour C., Bou Nader W., Breque F., Haddad M., and Nemer M. Jul. 2018. Assessing additional fuel consumption from cabin thermal comfort and auxiliary needs on the worldwide harmonized light vehicles test cycle, Transp. Res. Part Transp. Environ., 62, 139–151, doi: 10.1016/j.trd.2018.02.012.
- 10. Szymlet N., Lijewski P., and Kurc B. Oct. 2020. Road tests of a two-wheeled vehicle with the use of various urban road infrastructure solutions, J. Ecol. Eng., 21(7), 152–159, doi: 10.12911/22998993/125503.
- 11. Merkisz J., Dobrzynski M., and Kubiak K. 2017. An impact assessment of functional systems in vehicles on CO 2 emissions and fuel consumption, MATEC Web Conf., 118, 00030, doi: 10.1051/matecconf/201711800030.
- 12. Lejda K., Jaworski A., Mądziel M., Balawender K., Ustrzycki A., and Savostin-Kosiak D. Mar. 2021. Assessment of petrol and natural gas vehicle carbon oxides emissions in the laboratory and on-road tests, Energies, 14(6), 1631, doi: 10.3390/en14061631.
- 13. Lijewski P., Merkisz J., Fuć P., Ziółkowski A., Rymaniak Ł., and Kusiak W. Feb. 2017. Fuel consumption and exhaust emissions in the process of mechanized timber extraction and transport,” Eur. J. For. Res., 136(1), 153–160, doi: 10.1007/s10342-016-1015-2.
- 14. Andrych-Zalewska M., Chlopek Z., Merkisz J., and Pielecha J. Nov. 2022. Comparison of gasoline engine exhaust emissions of a passenger car through the WLTC and RDE type approval tests, Energies, 15(21), 8157, doi: 10.3390/en15218157.
- 15. Woodburn J., Bielaczyc P., Pielecha J., Merkisz J., and Szalek A. Apr. 2021. Exhaust emissions from two euro 6d-compliant plug-in hybrid vehicles: Laboratory and on-road testing, presented at the SAE WCX Digital Summit,, 2021-01–0605. doi:10.4271/2021-01-0605.
- 16. Danca P., Vartires A., and Dogeanu A. Jan. 2016. An overview of current methods for thermal comfort assessment in vehicle cabin, Energy Procedia, 85, 162–169, doi: 10.1016/j.egypro.2015.12.322.
- 17. Mądziel M., Jaworski A., Kuszewski H., Woś P., Campisi T., and Lew K. Dec. 2021. The development of CO2 instantaneous emission model of full hybrid vehicle with the use of machine learning techniques, Energies, 15(1), 142, doi: 10.3390/en15010142.
- 18. Pielecha I., Cieslik W., and Szwajca F. Jan. 2023. Energy flow and electric drive mode efficiency evaluation of different generations of hybrid vehicles under diversified urban traffic conditions, Energies, 16(2), 794, doi: 10.3390/en16020794.
- 19. Dimitrova Z. and Maréchal F. Dec. 2015. Energy integration study on a hybrid electric vehicle energy system, using process integration techniques, Appl. Therm. Eng., 91, 834–847, doi: 10.1016/j.applthermaleng.2015.08.094.
- 20. Bode F., Burnete N.V., Fechete Tutunaru L., and Nastase I. Mar. 2023. Improving electric vehicle range and thermal comfort through an innovative seat heating system, Sustainability, 15(6), 5534, doi:10.3390/su15065534.
- 21. Li N., Liu Y., Zhang J., Li C., Ji Y., and Liu W. Mar. 2022. Research on energy consumption evaluation of electric vehicles for thermal comfort, Environ. Sci. Pollut. Res., doi: 10.1007/s11356-022-19790-y.
- 22. Basińska M., Ratajczak K., Michałkiewicz M., Fuć P., and Siedlecki M. Nov. 2021. The way of usage and location in a big city agglomeration as impact factors of the nurseries indoor air quality, Energies, 14(22), 7534, doi: 10.3390/en14227534.
- 23. Gladyszewska-Fiedoruk K. Mar. 2011. Concentrations of carbon dioxide in a car, Transp. Res. Part Transp. Environ., 16(2), 166–171, doi: 10.1016/j.trd.2010.07.003.
- 24. Gładyszewska-Fiedoruk K. Jun. 2011. Concentrations of carbon dioxide in the cabin of a small passenger car, Transp. Res. Part Transp. Environ., 16(4), 327–331, doi: 10.1016/j.trd.2011.01.005.
- 25. Zali M.K.A.M. and Sulaiman S.A. Sep. 2022. Study on Air-Circulation Practices in Car Cabin, in 2022 7th International Conference on Electric Vehicular Technology (ICEVT), Bali, Indonesia: IEEE, 205–209. doi: 10.1109/ICEVT55516.2022.9924780.
- 26. Cichowicz R. and Wielgosiński G. Dec. 2015. Effect of meteorological conditions and building location on CO2 concentration in the university campus, Ecol. Chem. Eng. S, 22(4), 513–525, doi: 10.1515/eces-2015-0030.
- 27. Cichowicz R. and Wielgosiński G. Jun. 2018. Analysis of variations in air pollution fields in selected cities in Poland and Germany, Ecol. Chem. Eng. S, 25(2), 217–227, doi: 10.1515/eces-2018-0014.
- 28. Wei D., Nielsen F., Karlsson H., Ekberg L., and Dalenbäck J.-O. Jan. 2023. Vehicle cabin air quality: influence of air recirculation on energy use, particles, and CO2, Environ. Sci. Pollut. Res., 30(15), 43387–43402, doi: 10.1007/s11356-023-25219-x.
- 29. Wei D., Nielsen F., Ekberg L., Löfvendahl A., Bernander M., and Dalenbäck J.-O. Aug. 2020. PM2.5 and ultrafine particles in passenger car cabins in Sweden and northern China—the influence of filter age and pre-ionization, Environ. Sci. Pollut. Res., 27(24), 30815–30830, doi: 10.1007/s11356-020-09214-0.
- 30. Wei D., Nielsen F., Ekberg L., and Dalenbäck J.-O. Jun. 2022. Size-resolved simulation of particulate matters and CO2 concentration in passenger vehicle cabins, Environ. Sci. Pollut. Res., 29(30), 45364–45379, doi: 10.1007/s11356-022-19078-1.
- 31. Weng C.-L. and Kau L.-J. Aug. 2019. Design and implementation of a low-energy-consumption air-conditioning control system for smart vehicle, J. Healthc. Eng., 2019, 1–14, doi: 10.1155/2019/3858560.
- 32. Tolis E.I., Karanotas T., Svolakis G., Panaras G., and Bartzis J.G. Oct. 2021. Air quality in cabin environment of different passenger cars: effect of car usage, fuel type and ventilation/infiltration conditions, Environ. Sci. Pollut. Res., 28(37), 51232–51241, doi:10.1007/s11356-021-14349-9.
- 33. Munahar S., Purnomo B.C., Izzudin M., Setiyo M., and Saudi M.M. Jan. 2022. Vehicle air conditioner (VAC) control system based on passenger comfort: a proof of concept, IIUM Eng. J., 23(1), 370–383, doi: 10.31436/iiumej.v23i1.1812.
- 34. Alkaabi K. and Raza M. Dec. 2022. Revisiting the dynamics of car cabin environment and driver comfort,” Front. Built Environ., 8, 1041305, doi:10.3389/fbuil.2022.1041305.
- 35. Krawczyk N., Dębska L., and Białek A. Dec. 2021. Thermal comfort in the modern car-experimental analysis and verification of the fanger model, Int. Rev. Mech. Eng. IREME, 15(12), 609, doi:10.15866/ireme.v15i12.21473.
- 36. Dębska L. and Krawczyk N. Jun. 2023. Thermal comfort assessment in the modern passenger car under actual operational conditions, Prod. Eng. Arch., 29(2), 140–146, doi: 10.30657/pea.2023.29.16.
- 37. Gładyszewska-Fiedoruk K. and Teleszewski T.J. Jun. 2020. Modeling of humidity in passenger cars equipped with mechanical ventilation, Energies, 13(11), 2987, doi: 10.3390/en13112987.
- 38. Gładyszewska-Fiedoruk K. and Teleszewski T.J. Feb. 2023. Experimental research on the humidity in a passenger car cabin equipped with an air cooling system – development of a simplified model, Appl. Therm. Eng., 220, 119783, doi: 10.1016/j.applthermaleng.2022.119783.
- 39. Lee M., Chinnasamy V., Shin Y., and Cho H. May 2023. Numerical study on a vehicle driver’s thermal comfort when using water thermal seats during summer and winter, J. Mech. Sci. Technol., 37(5), 2593–2606, doi: 10.1007/s12206-023-0434-5.
- 40. Barrios C.C., Domínguez-Sáez A., Rubio J.R., and Pujadas M. Sep. 2012. Factors influencing the number distribution and size of the particles emitted from a modern diesel vehicle in real urban traffic,” Atmos. Environ., 56, 16–25, doi: 10.1016/j.atmosenv.2012.03.078.
- 41. Jaworski A., Kuszewski H., Wojewoda P., Balawender K., Woś P., Longwic R., Longwic R. Boichenko S. Jul. 2023. Assessment of the effect of road load on energy consumption and exhaust emissions of a hybrid vehicle in an urban road driving cycle-comparison of road and chassis dynamometer tests, Energies, 16(15), 5723, doi: 10.3390/en16155723.
- 42. Merkisz, J., Mizera, J., Bajerlein, M., Rymaniak, L., Maj, P. 2014. The influence of laser treatment and the application of reduced pressure force piston rings on the engine exhaust emissions under the conditions of engine lubrication with different engine oils. Applied Mechanics and Materials, 518, 102–107.
- 43. Kim H.J., Lee S.H., Kwon S.II, Park S., Lee J., Keel J.H., Lee J.T., Park S. Sep. 2020. Investigation of the emission characteristics of light-duty diesel vehicles in Korea Based on EURO-VI standards according to type of after-treatment system, Energies, 13(18), 4936, doi: 10.3390/en13184936.
- 44. Pielecha I. and Szwajca F. Apr. 2023. Combustion of lean methane/propane mixtures with an active prechamber engine in terms of various fuel distribution, Energies, 16(8), 3608, doi: 10.3390/en16083608.
- 45. Andrych-Zalewska M., Chlopek Z., Merkisz J., and Pielecha J. Feb. 2023. Impact of the internal combustion engine thermal state during start-up on the exhaust emissions in the homologation test, Energies, 16(4), 1937, doi: 10.3390/en16041937.
- 46. Bodisco T. and Zare A. Jun. 2019. Practicalities and driving dynamics of a real driving emissions (RDE) Euro 6 regulation homologation test, Energies, 12(12), 2306, doi: 10.3390/en12122306.
- 47. Kurzawska P. and Jasiński R. Mar. 2021. Overview of sustainable aviation fuels with emission characteristic and particles emission of the turbine engine fuelled ATJ blends with different percentages of ATJ fuel, Energies, 14(7), 1858, doi: 10.3390/en14071858.
- 48. Cichowicz R. and Dobrzański M. Nov. 2022. 3D spatial dispersion of particulate matter and gaseous pollutants on a university campus in the center of an urban agglomeration, Energy, 259, 125009, doi:10.1016/j.energy.2022.125009.
- 49. Cichowicz R. and Dobrzański M. Jan. 2021. Indoor and outdoor concentrations of particulate matter (PM10, PM2.5) and gaseous pollutants (VOC,H2S) on different floors of a university building: A case study, J. Ecol. Eng., 22(1), 162–173, doi:10.12911/22998993/128859.
- 50. Pałaszyńska K., Bandurski K., and Porowski M. 2017. Energy demand and thermal comfort of HVAC systems with thermally activated building systems as a function of user profile, E3S Web Conf., 22, 00130, doi: 10.1051/e3sconf/20172200130.
- 51. Ratajczak K., Bandurski K., and Płóciennik A. Dec. 2022. Incorporating an atrium as a HAVC element for energy consumption reduction and thermal comfort improvement in a Polish climate, Energy Build., 277, 112592, doi: 10.1016/j.enbuild.2022.112592.
- 52. Oh J., Wong W., Castro-Lacouture D., Lee J., and Koo C. Jun. 2023. Indoor environmental quality improvement in green building: Occupant perception and behavioral impact, J. Build. Eng., 69, 106314, doi: 10.1016/j.jobe.2023.106314.
- 53. Wang C., Lin Y., Ptukhin Y., and Liu S. 2023. Air quality in the car: How CO2 and body odor affect drivers’ cognition and driving performance?, SSRN, preprint, doi: 10.2139/ssrn.4525547.
- 54. Ratajczak K. 2022. Ventilation strategy for proper IAQ in existing nurseries buildings - Lesson learned from the research during COVID-19 pandemic, Aerosol Air Qual. Res., 22(3), 210337, doi: 10.4209/aaqr.210337.
- 55. Cichowicz R., Sabiniak H., and Wielgosińsk G. Mar. 2015. The influence of a ventilation on the level of carbon dioxide in a classroom at a higher university / wpływ Wentylacji na poziom ditlenku węgla w pomieszczeniu uczelni wyższej, Ecol. Chem. Eng. S, 22(1), 61–71, doi: 10.1515/eces-2015-0003.
- 56. Ratajczak K. and Basińska M. Apr. 2021. The wellbeing of children in nurseries does not have to be expensive: the real costs of maintaining low carbon dioxide concentrations in nurseries, Energies, 14(8), 2035, doi: 10.3390/en14082035.
- 57. Laska M. and Dudkiewicz E. 2017. Research of CO2 concentration in naturally ventilated lecture room,” E3S Web Conf., 22, 00099, doi: 10.1051/e3sconf/20172200099.
- 58. Marczak H, Droździel P. 2021. Analysis of pollutants emission into the air at the stage of an electric vehicle operation. Journal of Ecological Engineering. 22(8), 182–188. doi: 10.12911/22998993/140256.
- 59. Rayapureddy S.M., Matijošius J., Rimkus A., Caban J., Słowik T. 2022. Comparative study of combustion, performance and emission characteristics of hydrotreated vegetable oil–biobutanol fuel blends and diesel fuel on a CI engine. Sustainability. 14(12), 7324. doi: 10.3390/su14127324.
- 60. Kuranc A., Caban J., Šarkan B., Dudziak A., Stoma M. 2021. Emission of selected exhaust gas components and fuel consumption in different driving cycles. Communications - Scientific letters of the University of Zilina. 23. B265-B277. 10.26552/com.C.2021.4.B265-B277.
- 61. Yang L., Ji S., Niu W., Zare A., Hunicz J., Brown R.J. 2024. Effect of split injection strategy of diesel fuel on multi-stage heat release and performance of a RCCI engine fueled with diesel and natural gas, Fuel, 362, 130930, doi: 10.1016/j.fuel.2024.130930.
- 62. Hudec J., Šarkan B., Czödörová R., Caban J. 2021. The influence of quality management system on the operation of periodical technical inspection stations. Applied Sciences. 11(11), 4854. doi: 10.3390/app11114854.
- 63. Žvirblis T., Hunicz J., Matijošius J., Rimkus A., Kilikevičius A., Gęca M. 2023. Improving diesel engine reliability using an optimal prognostic model to predict diesel engine emissions and performance using pure diesel and hydrogenated vegetable oil. Eksploatacja i Niezawodność – Maintenance and Reliability. 25(4). doi:10.17531/ein/174358.
- 64. Caban J., Kuranc A., Sarkan B., Sejkorova M., Loman M. 2022. Porównanie emisji spalin z silników pojazdów ciężarowych zasilanych olejem napędowym (ON) oraz gazem ziemnym (LNG) w warunkach rzeczywistej eksploatacji. Przemysł Chemiczny, 1, 37–41. doi: 10.15199/62.2022.1.2
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1ec8b2b7-5da4-4e03-8420-97673f54317c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.