PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A new intelligence model for evaluating clay compressibility in soft ground improvement: a combined approach of bees optimization and extreme learning machine

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study investigated the compressibility of clay (Cc) for soft ground improvement and developed six optimized metaheuristic-based extreme learning machine (ELM) models (particle swarm optimization (PSO)-ELM, moth search optimization (MSO)-ELM, firefly optimization (FO)-ELM, cuckoo search optimization (CSO)-ELM, bees optimization (BO)-ELM, and ant colony optimization (ACO)-ELM) to predict Cc. A total of 739 laboratory tests were conducted to develop the models, and 517 datasets were used for training, while the remaining 222 samples were used for testing. The results showed that the accuracy of the developed models was improved by 3-5% compared to the original ELM model. The BO-ELM and MSO-ELM models were identified as the most effective models for predicting Cc, with accuracies ranging from 86.5% to 87%. The study suggests that the MSO-ELM model should be used if training time is critical. The developed models provide useful tools for predicting Cc, an essential parameter for soft ground improvement design, and can assist in the improvement of soft ground.
Czasopismo
Rocznik
Strony
579--595
Opis fizyczny
Bibliogr. 69 poz.
Twórcy
autor
  • Department of Mathematics Education, Zhumadian Preschool Education College, Zhumadian 463000, China
  • Artificial Intelligence in Engineering Innovation Research Group (AI-EngrInnovate), Toronto, Canada
  • Faculty of Computer Science, Phenikaa University, Yen Nghia, Ha Dong, Hanoi 12116, Vietnam
autor
  • School of Resources and Safety Engineering, Central South University, Changsha 410083, China
  • National Institute of Hydrology and Water Management, Bucharest, Romania
  • Department of Civil Engineering, Transilvania University of Brasov, Brasov, Romania
  • Danube Delta National Institute for Research and Development, Tulcea, Romania
  • Department of Information Technology, Swinburne Vietnam - FPT University, Da Nang, Vietnam
Bibliografia
  • 1. Ahmed AN, Van Lam T, Hung ND, Van Thieu N, Kisi O, El-Shafie A (2021) A comprehensive comparison of recent developed metaheuristic algorithms for streamflow time series forecasting problem. Appl Soft Comput 105:107282. https://doi.org/10.1016/j. asoc.2021.107282
  • 2. Akbarimehr D, Eslami A, Aflaki E, Imam R (2020) Using empirical correlations and artificial neural network to estimate compressibility of low plasticity clays. Arab J Geosci 13(22):1225
  • 3. Al-Khafaji A, Andersland O (1992) Equations for compression index approximation. J Geotech Eng 118(1):148-153
  • 4. Almeida MSS, Marques MES, Riccio M, Fagundes DF, Lima BT, Polido UF, Cirone A, Hosseinpour I (2023) Ground improvement techniques applied to very soft clays: state of knowledge and recent advances. Soils Rocks 46:008222
  • 5. Arulrajah A, Bo M, Leong M, Disfani M (2013) Piezometer measurements of prefabricated vertical drain improvement of soft soils under land reclamation fill. Eng Geol 162:33-42
  • 6. Azzouz AS, Krizek RJ, Corotis RB (1976) Regression analysis of soil compressibility. Soils Found 16(2):19-29
  • 7. Bhandari AK, Srinivas K, Kumar A (2021) Optimized histogram computation model using cuckoo search for color image contrast distortion. Digit Signal Process 118:103203
  • 8. Bowles JE (1979) Physical and geotechnical properties of soils. McGraw-Hill, New York
  • 9. Colorni A, Dorigo M, Maniezzo V (1991) Distributed optimization by ant colonies. In: Proceedings of the first European conference on artificial life, Paris, France
  • 10. Cozzolino V (1961) Statistical forecasting of compression index. In: Proceedings of the 5th international conference on soil mechanics and foundation engineering Paris
  • 11. Gandomi AH, Yang X-S, Alavi AH (2013) Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. Eng Comput 29(1):17-35
  • 12. Gazetas G (2015) 4th Ishihara lecture: soil-foundation-structure systems beyond conventional seismic failure thresholds. Soil Dyn Earthq Eng 68:23-39
  • 13. Grizi A, Al-Ani W, Wanatowski D (2022) Numerical analysis of the settlement behavior of soft soil improved with stone columns. Appl Sci 12(11):5293
  • 14. He Z, Nguyen H, Vu TH, Zhou J, Asteris PG, Mammou A (2021) Novel integrated approaches for predicting the compressibility of clay using cascade forward neural networks optimized by swarm- and evolution-based algorithms. Acta Geotech 17:12571272. https://doi.org/10.1007/s11440-021-01358-8
  • 15. Hough BK (1969) Basic soils engineering. Ronald Press Company, New York
  • 16. Huang L, Ding S, Yu S, Wang J, Lu K (2016) Chaos-enhanced Cuckoo search optimization algorithms for global optimization. Appl Math Model 40(5-6):3860-3875
  • 17. Islam S, Islam J, Robiul Hoque NM (2022) Improvement of consolidation properties of clay soil using fine-grained construction and demolition waste. Heliyon 8(10):e11029
  • 18. Jaafari A, Panahi M, Mafi-Gholami D, Rahmati O, Shahabi H, Shir-zadi A, Lee S, Bui DT, Pradhan B (2022) Swarm intelligence optimization of the group method of data handling using the cuckoo search and whale optimization algorithms to model and predict landslides. Appl Soft Comput 116:108254
  • 19. Joshi AS, Kulkarni O, Kakandikar GM, Nandedkar VM (2017) Cuckoo search optimization-a review. Mater Today Proc 4(8):7262-7269
  • 20. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of ICNN'95-international conference on neural networks, IEEE
  • 21. Koppula S (1981) Statistical estimation of compression index. Geotech Test J 4(2):68-73
  • 22. Kumar N, Shaikh AA, Mahato SK, Bhunia AK (2021) Applications of new hybrid algorithm based on advanced cuckoo search and adaptive Gaussian quantum behaved particle swarm optimization in solving ordinary differential equations. Expert Syst Appl 172:114646
  • 23. Kurdi M (2022) Ant colony optimization with a new exploratory heuristic information approach for open shop scheduling problem. Knowl-Based Syst 242:108323
  • 24. Mayne PW (1980) Cam-clay predications of undrained strength. J Geotech Eng Div 106(11):1219-1242
  • 25. Mesri G, Ajlouni M (2007) Engineering properties of fibrous peats. J Geotech Geoenviron Eng 133(7):850-866
  • 26. Moayed RZ, Kordnaeij A, Mola-Abasi H (2017) Compressibility indices of saturated clays by group method of data handling and genetic algorithms. Neural Comput Appl 28(1):551-564
  • 27. Murlidhar BR, Nguyen H, Rostami J, Bui X, Armaghani DJ, Ragam P, Mohamad ET (2021) Prediction of flyrock distance induced by mine blasting using a novel Harris Hawks optimization-based multi-layer perceptron neural network. J Rock Mech Geotech Eng 13(6):1413-1427
  • 28. Nagaraj T, Murthy BS (1985) Prediction of the preconsolidation pressure and recompression index of soils. Geotech Test J 8(4):199-202
  • 29. Nguyen T, Hoang B, Nguyen G, Nguyen BM (2020a) A new workload prediction model using extreme learning machine and enhanced tug of war optimization. Proc Comput Sci 170:362-369. https:// doi.org/10.1016/j.procs.2020.03.063
  • 30. Nguyen T, Nguyen G, Nguyen BM (2020b) EO-CNN: an enhanced CNN model trained by equilibrium optimization for traffic transportation prediction. Proc Comput Sci 176:800-809. https://doi. org/10.1016/j.procs.2020.09.075
  • 31. Nishida Y (1956) A brief note on compression index of soil. J Soil Mech Found Div 82(3):1027-1021
  • 32. Oztoprak S, Pisirici B (2011) Effects of micro structure changes on the macro behaviour of Istanbul (Turkey) clays exposed to landfill leachate. Eng Geol 121(3-4):110-122
  • 33. Pandian N, Nagaraj T (1990) Critical reappraisal of colloidal activity of clays. J Geotech Eng 116(2):285-296
  • 34. Park S, Jung D, Nguyen H, Choi Y (2021) Diagnosis of problems in truck ore transport operations in underground mines using various machine learning models and data collected by internet of things systems. Minerals 11(10):1128
  • 35. Peck RB, Reed WC (1954) Engineering properties of Chicago subsoils. University of Illinois at Urbana Champaign, College of Engineering, Champaign
  • 36. Peduto D, Elia F, Montuori R (2018) Probabilistic analysis of settlement-induced damage to bridges in the city of Amsterdam (The Netherlands). Transp Geotech 14:169-182
  • 37. Pham D, Ghanbarzadeh A, Koc E, Otri S, Rahim S, Zaidi M (2005) The bees algorithm. Manufacturing Engineering Centre Cardiff University, Cardiff UK, pp 44-48
  • 38. Quinn J, Rosser N, Murphy W, Lawrence J (2010) Identifying the behavioural characteristics of clay cliffs using intensive monitoring and geotechnical numerical modelling. Geomorphology 120(3-4):107-122
  • 39. Rogers C, Glendinning S (1997) Improvement of clay soils in situ using lime piles in the UK. Eng Geol 47(3):243-257
  • 40. Rutledge P (1958) Study of deep soil stabilization by vertical sand drains
  • 41. Schofield AN, Wroth P (1968) Critical state soil mechanics. McGraw-hill, London
  • 42. Shang Y, Nguyen H, Bui X-N, Tran Q-H, Moayedi H (2020) A novel artificial intelligence approach to predict blast-induced ground vibration in open-pit mines based on the firefly algorithm and artificial neural network. Nat Resour Res 29(2):723-737
  • 43. Shen M, Martin JR, Ku C-S, Lu Y-C (2018) A case study of the effect of dynamic compaction on liquefaction of reclaimed ground. Eng Geol 240:48-61
  • 44. Shouka H (1964) Relationship of compression index and liquid limit of alluvial clay. In: Proceeding 19th Japan civil engineering conference Touhoku
  • 45. Skempton AW, Jones O (1944) Notes on the compressibility of clays. Q J Geol Soc 100(1-4):119-135
  • 46. Sowers GB, Sowers GF (1951) Introductory soil mechanics and foundations. LWW, Philadelphia
  • 47. Sun B, Hu Z, Liu X, Xu Z-D, Xu D (2022) A physical model-free ant colony optimization network algorithm and full scale experimental investigation on ceiling temperature distribution in the utility tunnel fire. Int J Therm Sci 174:107436
  • 48. Terzaghi K, Peck RB (1968) Soil mechanics in engineering practice, 2d edn. Wiley, New York
  • 49. Thieu Nguyen TN, Nguyen BM, Nguyen G (2019) Efficient time-series forecasting using neural network and opposition-based coral reefs optimization. Int J Comput Intell Syst 12(2):1144-1161. https:// doi.org/10.2991/ijcis.d.190930.003
  • 50. Van Thieu N, Mirjalili S (2023) MEALPY: An open-source library for latest meta-heuristic algorithms in Python. J Syst Archit 139:102871. https://doi.org/10.1016/j.sysarc.2023.102871
  • 51. Van Thieu N, Barma SD, Van Lam T, Kisi O, Mahesha A (2023) Groundwater level modeling using augmented artificial ecosystem optimization. J Hydrol 617:129034. https://doi.org/10.1016/j. jhydrol.2022.129034
  • 52. Wang G-G (2018) Moth search algorithm: a bio-inspired metaheuristic algorithm for global optimization problems. Memet Comput 10(2):151-164
  • 53. Wang L, Wu C, Tang L, Zhang W, Lacasse S, Liu H, Gao L (2020) Efficient reliability analysis of earth dam slope stability using extreme gradient boosting method. Acta Geotech 15(11):3135-3150
  • 54. Wu H-N, Zhang P, Chen R-P, Lin X-T, Liu Y (2020) Ground response to horizontal spoil discharge jet grouting with impacts on the existing tunnels. J Geotech Geoenviron Eng 146(7):05020006
  • 55. Yamagutshi H (1959) Characteristics of alluvial clay. Rep Kyushyu Agric Investig Center of Jpn 5(4):349-358
  • 56. Yang X-S, Deb S (2014) Cuckoo search: recent advances and applications. Neural Comput Appl 24(1):169-174
  • 57. Yang X-S, He X (2013) Firefly algorithm: recent advances and applications. Int J Swarm Intell 1(1):36-50
  • 58. Zhang H, Zeng R, Zhang Y, Zhao S, Meng X, Li Y, Liu W, Meng X, Yang Y (2022) Subsidence monitoring and influencing factor analysis of mountain excavation and valley infilling on the Chinese Loess Plateau: a case study of Yan’an New District. Eng Geol 297:106482
  • 59. Zhang P (2019) A novel feature selection method based on global sensitivity analysis with application in machine learning-based prediction model. Appl Soft Comput 85:105859
  • 60. Zhang P, Yin Z-Y, Jin Y-F, Chan TH, Gao F-P (2021a) Intelligent modelling of clay compressibility using hybrid meta-heuristic and machine learning algorithms. Geosci Front 12(1):441-452
  • 61. Zhang S, Bui X-N, Trung N-T, Nguyen H, Bui H-B (2020) Prediction of rock size distribution in mine bench blasting using a novel ant colony optimization-based boosted regression tree technique. Nat Resour Res 29(2):867-886
  • 62. Zhang W, Wu C, Zhong H, Li Y, Wang L (2021b) Prediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization. Geosci Front 12(1):469-477
  • 63. Zhang W, Zhang R, Wang W, Zhang F, Goh ATC (2019a) A multivariate adaptive regression splines model for determining horizontal
  • 64. wall deflection envelope for braced excavations in clays. Tunn Undergr Space Technol 84:461-471
  • 65. Zhang W, Zhang R, Wu C, Goh ATC, Lacasse S, Liu Z, Liu H (2019) State-of-the-art review of soft computing applications in underground excavations. Geosci Front 11(4):1095-1106
  • 66. Zhang X, Mavroulidou M, Gunn M (2015) Mechanical properties and behaviour of a partially saturated lime-treated, high plasticity clay. Eng Geol 193:320-336
  • 67. Zhao H, Zhang C, Zheng X, Zhang C, Zhang B (2022) A decomposition-based many-objective ant colony optimization algorithm with adaptive solution construction and selection approaches. Swarm Evol Comput 68:100977
  • 68. Zhou Y, Li W, Wang X, Qiu Y, Shen W (2022) Adaptive gradient descent enabled ant colony optimization for routing problems. Swarm Evol Comput 70:101046
  • 69. Zhu Q-Y, Jin Y-F, Yin Z-Y (2020) Modeling of embankment beneath marine deposited soft sensitive clays considering straightforward creep degradation. Mar Georesour Geotechnol 38(5):553-569
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1ec3b975-bbf9-4c8e-9bd4-e370357da2f0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.