Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this article, an analysis of impact of the form, size and location of pores on the effective thermal conductivity coefficient of porous metallic materials is presented. It is shown the influence of porosity parameters separately on the electronic and phonon; convective and radiation component of effective thermal conductivity. The distribution of the heat flow and temperature in the experimental samples were analyzed. Form and location of pores, which give opportunity to reached minimum electronic and phonon thermal conductivity, and also the most significant factor (porosity parameter), which influence on the electronic and phonon thermal conductivity are found. The previously expressed hypothesis about the impact on the convective motions by not only pores size, but also temperature is confirmed. Dependence of convective and radiation heat conductivity from the pores size in the porous metal material was obtained.
Wydawca
Rocznik
Tom
Strony
112--122
Opis fizyczny
Bibliogr. 13 poz., rys., tab., wykr., wzory
Twórcy
autor
- Kielce University of Technology, Poland
- Ivano-Frankivsk National Technical University of Oil and Gas, Ukraine
autor
- Zaporizhzhya state engineering academy, Ukraine
Bibliografia
- [1] Gunasegaram D.R., Farnsworth D.J., Nguyen T.T. (2009), Identification of critical factors affecting shrinkage porosity in permanent mold casting using numerical simulations based on design of experiments. Materials Processing Technology. Vol. 209, pp. 1209-1219.
- [2] Spasskij AG. (1950), Osnovy litejnogo proizvodstva [Fundamentals of foundry]. Moscow, Metallurgizdat. 318 p.
- [3] Impregnation improves casting quality. Vacuum. 1953. Vol. 3, No. 1, pp. 94.
- [4] William van Grunsven (2014), Porous metal implants for enhanced bone in growth and stability. Thesis submitted to the University of Sheffield for the degree of Doctor of Philosophy. Department of Materials Science and Engineering. September 2014.
- [5] Reglero JA, Rodriguez-Perez M.A., Solorzano E., de Saia JA (2011), Aluminium foams as a filler for leading edges: Improvements in the mechanical behavior under bird strike impact tests. Materials and design. Vol. 32, No. 2, pp. 907-910.
- [6] Lepeshkin I.A., Ershov M.Ju. (2010), Vspenennyj aljuminij v avtomobilestroenii [Foamed aluminum in automobile industry]. Avtomobil'naja promyshlennost' [Automobile industry]. No, 10, pp. 36-39.
- [7] Krupin Ju.A., Avdeenko A.M. (2008J, Sil'noporistye struktury - novyj klass konstrukcionnyh materialov [Highly porous structure as a new class of structural materials]. Tjazheloe mashinostroenie [Heavy mechanical engineering]. No. 7, pp. 18-21.
- [8] Krushenko G.G. (2012), Poluchenie i primenenie poristyh metallicheskih materialov v tehnike [Production and application of porous metal materials in engineering]. Vestnik Sibirskogo gosudarstvennogo ajerokosmicheskogo universiteta imeni akademika M. F. Reshetneva. Tehnologicheskie processy i materialy [Bulletin of Siberian State Aerospace University. Technological processes and materials], pp. 181-184.
- [9] Tang H.P. (2012), Fractal dimension of pore-structure of porous metal materials made by stainless steel powder. Powder Technology. Vol. 217, pp. 383-387.
- [10] Banhart J. (2000), Manufacturing routes for metallic foams. Journal of Metals. Vol. 52, pp. 22-27.
- [11] Nielsen H., Hufnagel W., Ganoulis G. (1974), Aluminium - Zentraie Dusseldorf. 1054 p.
- [12] Saenz E., Baranda P.S., Bonhomme J. (1998), Porous and cellular materials for structural applications. Materials of Symp. Proc. Vol. 521, 83 p.
- [13] Pavlenko A, Koshlak H. (2015), Production of porous material with projected thermophysical characteristics. Metallurgical and Mining Industry. No 1, pp. 123-127
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1ec0d135-bb6e-4018-86df-da58b05a414a