PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Electrical and photoresponse characteristics of 8-(1H-indol-3-ylazo)-naphthalene-2-sulfonic acid/n-Si photodiode

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, of primary interest is to synthesis 8-(1H-indol-3-ylazo)-naphthalene-2-sulfonic acid (INSA) and to evaluate the main parameters of Au/INSA/n-Si/Al diode in dark and under illumination. Different techniques are used for interpreting the proposed INSA chemical structure. The dark current-voltage measurements were achieved in the temperature range of 293−413K. It is noticed that INSA films modify the interfacial barrier height of classical Au/n-Si junction. At low applied voltages, the I–V relation shows exponential behavior. The values ideality factor, n, and the barrier height, φ, are improved by heating. The abnormal trend of n and φ is discussed, and a homogenous barrier height of 1.45 eV is evaluated. The series resistance is also calculated using Norde's function and it changes inversely with temperature. The space charge limited current ruled with exponential trap distribution dominates at relatively high potentials, trap concentration and carriers mobility are extracted. The reverse current of the diode has illumination intensity dependence with a good photosensitivity indicating that the device is promising for photodiode applications.
Twórcy
  • Renewable Energy Science and Engineering Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef 62511, Egypt
  • Solid State Electronics Laboratory, Solid State Physics Department, Physics Research Division, National Research Centre, 33 El-Bohouth St., Dokki, Giza 12622, Egypt
autor
  • Department of Chemistry, Faculty of Education, Al-Zintan University, Libya
Bibliografia
  • [1] H.M. Zeyada, M.M. El-Nahass, M.M. El-Shabaan, Photovoltaic properties of the 4H-pyrano[3,2-c]quinoline derivatives and their applications in organic–inorganic photodiode fabrication, Synth. Met. 220 (2016) 102.
  • [2] T. Kilicoglu , M.E. Aydin, Y.S. Ocak, The determination of the interface state density distribution of the Al/methyl red/p-Si Schottky barrier diode by using a capacitance method, Physica B 388 (2007) 244.
  • [3] O. Gullu, S. Aydogan, A. Turut, Fabrication and electrical characteristics of Schottky diode based on organic material, Microelectron. Eng. 85 (2008) 1647.
  • [4] A. Bafana, S.S. Devi, T. Chakrabarti, Azo dyes: past, present and the future, Environ. Rev. 19 (1) (2011) 350.
  • [5] H. Motiei, A. Jafari, R. Naderali, Third-order nonlinear optical properties of organic azo dyes by using strength of nonlinearity parameter and Z-scan technique, Opt. Laser Technol. 88 (2017) 68.
  • [6] E. Westphal, I.H. Bechtold, H. Gallardo, Synthesis and optical/thermal behavior of new azo photoisomerizable discotic liquid crystals, Macromolecules 43 (2010) 1319.
  • [7] B. Basheer, T.M. Robert, K.P. Vijayalakshmi, D. Mathew, Solar cells sensitised by push–pull azo dyes: dependence of photovoltaic performance on electronic structure, geometry and conformation of the sensitizer, Int. J. Ambient Energy 39-5 (2018) 433.
  • [8] A.R.V. Roberts, D.A. Evans, Modification of GaAs Schottky diodes by thin organic interlayers, Appl. Phys. Lett. 86 (2005) 072105.
  • [9] M. Lonergan, Charge transport at conjugated polymer-inorganic semiconductor and conjugated polymer-metal interfaces, Annu. Rev. Phys. Chem. 55 (2004) 257.
  • [10] E.M. El-Menyawy, Electrical and photovoltaic properties of Gaussian distributed inhomogeneous barrier based on tris (8-hydroxyquinoline) indium/p-Si interface, Mater. Sci. Semicond. Process. 32 (2015) 145.
  • [11] I.T. Zedan, N.A. El-Ghamaz, E.M. El-Menyawy, Geometrical and crystal structures, optical absorption and device characterization of N-(5-{[antipyrinyl-hydrazono]-cyanomethyl}-[1,3,4]thiadiazol-2-yl)-benzamide, Mater. Sci. Semicond. Process. 39 (2015) 408.
  • [12] I.T. Zedan, F.M.A. El-Taweel, R.A.N. Abu El-Enein, H.H. Nawar, E.M. El-Menyawy, Optical properties and junction characteristics of 6-(5-Bromothiohen-2-yl)-2,3-Dihydro-1-Methyl-3-Oxo-2-Phenyl-1HPyrazolo[4,3-b]Pyridine-5-Carbonitrile films, J. Electron. Mater. 45 (11) (2016) 5928.
  • [13] E.M. El-Menyawy, I.T. Zedan, Optical properties and device characteristics of 2-(antipyrin-4-ylhydrazono)-2-(4-nitrophenyl)acetonitrile thin films for photodiode applications, Spectrochim. Acta A. 137 (2015) 810.
  • [14] I.T. Zedan, E.M. El-Menyawy, A.M. Mansour, Physical characterizations of 3-(4-methyl piperazinylimino methyl)rifampicin films for photodiode applications, Silicon 11–3 (2019) 1693.
  • [15] E. Hökelek, G.Y. Robinson, A comparison of Pd schottky contacts on InP, GaAs and Si, Solid. Electron. 24 (1981) 99.
  • [16] S. Mahato, J. Puigdollers, Temperature dependent current-voltage characteristics of Au/n-Si Schottky barrier diodes and the effect of transition metal oxides as an interface layer, Physica B 530 (2018) 327.
  • [17] Y. Takanashi, N. Oyama, K. Momiyama, Y. Kimura, M. Niwano, F. Hirose, Alpha-sexthiophene/n− Si heterojunction diodes and solar cells investigated by I–V and C–V measurements, Synth. Met. 161 (2012) 2792.
  • [18] H. C¸ ulcu, M. Gökc¸ ena, A. Allı, S. Allı, Current-voltage characteristics of Au/PLiMMA/n-Si diode under ultraviolet irradiation, J. Phys. Chem. Solids 103 (2017) 197–200.
  • [19] M.K. Hudait, P. Venkateswarlu, S.B. Krupanidhi, Electrical transport characteristics of Au/n-GaAs Schottky diodes on n-Ge at low temperatures, Solid. Electron. 45 (2001) 133.
  • [20] N. Tugluoglu, S. Karadeniz, M. Sahin, H. Safak, Temperature dependence of current–voltage characteristics of Ag/p-SnSe Schottky diodes, Appl. Surf. Sci. 233 (2004) 320.
  • [21] O.F. Yuksel, N. Tugluoglu, B. Gulveren, H. Safak, M. Kus, Electrical properties of Au/perylene-monoimide/p-Si schottky diode, J. Alloys. Compd. 577 (2013) 30.
  • [22] S. Karatas, S. Altındal, A. Turut, A. Ozmen, Temperature dependence of characteristic parameters of the H-terminated Sn/p-Si(100) Schottky contacts, Appl. Surf. Sci. 217 (2003) 250.
  • [23] B. Abay, G. Cankaya, H.S. Guder, H. Efeoglu, Y.K. Yogurtcu, Barrier characteristics of Cd/p-GaTe Schottky diodes based on I–V–T measurements, Semicond. Sci. Tech. 18 (2002) 75.
  • [24] M.K. Hudait, P. Venkateswarlu, S.B. Krupanidhi, Electrical transport characteristics of Au/n-GaAs Schottky diodes on n-Ge at low temperatures, Solid-State Electron. 45 (2001) 133.
  • [25] R.F. Schmitsdorf, T.U. Kampen, W. Monch, Correlation between barrier height and interface structure of Ag/Si(111) schottky contacts, Surf. Sci. 324 (1995) 249.
  • [26] H. Norde, A modified forward I-V plot for Schottky diodes with high series resistance, J. Appl. Phys. 50 (1979) 5052.
  • [27] M.A. Lampert, Volume-controlled current injection in insulators, Rep. Prog. Phys. 27 (1964) 329.
  • [28] A. Sussman, Space charge limited currents in copper phthalocyanine thin films, J. Appl. Phys. 38 (1967) 2738.
  • [29] A.K. Hassan, R.D. Gould, The electrical properties of copper phthalocyanine thin films using indium electrodes, J. Phys. D 22 (1989) 1162.
  • [30] A. Ahmed, R.A. Collins, Ohmic and space charge limited conduction in lead phthalocyanine thin films, Phys. Status Solidi A 123 (1991) 201.
  • [31] E.M. El-Menyawy, A.M. Mansour, N.A. El-Ghamaz, S.A. El-Khodary, Electrical conduction mechanisms and thermal properties of 2-(2, 3-dihydro-1,5-dimethyl-3-oxo-2-phenyl-1H-pyrazol-4-ylimino)-2-(4-nitrophenyl)acetonitrile, Physica B 413 (2013) 31.
  • [32] J.J. Hassan, M.A. Mahdi, S.J. Kasim, N.M. Ahmed, H. Abu Hassan, Z. Hassan, High sensitivity and fast response and recovery times in a ZnO nanorod array/p-Si self-powered ultraviolet detector, Appl. Phys. Lett. 101 (2012) 261108.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1ebc370a-aea4-47e7-8b2d-ebe340728b95
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.