PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Diminutive left-handed plasmonic nanoantenna-lens system in optical realm: ultraviolet emission and flat lens application

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In present paper, a tunable left-handed plasmonic nanoantenna is designed to attain ultraviolet emission through a second harmonic generation with a phase harmonic condition. For the devised structure, the dispersion properties and negative values of the magnetic permeability and the electric permittivity show that the designed structure is left-handed for the primary wave (red light) and right-handed for the second harmonic wave (ultraviolet light). The 3D finite-difference time-domain method is employed to reveal its nonpareil skills (i.e. immense left-handed transmission efficiency and far-field spectrum exhibiting directionality). Attained results by numerical calculation for the second harmonic generation are accomplished with finite-difference time-domain analysis. The impact of physical parameters on transmission and dispersion characteristics is also scrutinized. Furthermore, flat lens application for a red light region with a centered wavelength at λ = 650 nm from the guileless design of LHM with no aberration is triumphed. Ultimately, a multifunction left-handed material is designed revealing tremendous potential to amass and abridge future applications in one architecture.
Czasopismo
Rocznik
Strony
679--692
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
  • Ambedkar Institute of Technology, Directorate of Training and Technical Education (Government of Delhi)
  • Ambedkar Institute of Technology, Directorate of Training and Technical Education (Government of Delhi)
  • Optical Functional Materials Laboratory, Toyota Technological Institute, Nagoya 468-8511, Japan
autor
  • Ambedkar Institute of Technology, Directorate of Training and Technical Education (Government of Delhi)
Bibliografia
  • [1] TAYA S.A., P-polarized surface waves in a slab waveguide with left-handed material for sensing applications, Journal of Magnetism and Magnetic Materials 377, 2015, pp. 281–285, DOI:10.1016/j.jmmm.2014.10.126.
  • [2] YAO J., LIU Z., LIU Y., WANG Y., SUN C., BARTAL G., STACY A.M., ZHANG X., Optical negative refraction in bulk materials of nanowires, Science 321(5891), 2008, p. 930, DOI:10.1126/science.1157566.
  • [3] TAYA S.A., EL-AGEZ T.M., KULLAB H.M., ABADLA M.M., SHABAT M.M., Theoretical study of slab waveguide optical sensor with left-handed material as a core layer, Optica Applicata 42(1), 2012, pp. 193–205, DOI:10.5277/oa120118.
  • [4] YUAN H.-K., CHETTIAR U.K., CAI W., KILDISHEV A.V., BOLTASSEVA A., DRACHEV V.P., SHALAEV V.M., A negative permeability material at red light, Optics Express 15(3), 2007, pp. 1076–1083, DOI:10.1364/OE.15.001076.
  • [5] ZHANG S., FAN W., PANOIU P.C., MALLOY K.J., OSGOOD R.M., BRUECK S.R.J., Demonstration of near-infrared negative-index metamaterials, Physical Review Letters 95(13), 2005, article ID 137404, DOI:10.1103/PhysRevLett.95.137404.
  • [6] TAYA S.A., MAHDI S.S., ALKANOO A.A., QADOURA I.M., Slab waveguide with conducting interfaces as an efficient optical sensor: TE case, Journal of Modern Optics 64(8), 2017, pp. 836–843, DOI:10.1080/09500340.2016.1262072.
  • [7] TAYA S.A., JARADA A.A., KULLAB H.M., Slab waveguide sensor utilizing left-handed material core and substrate layers, Optik 127(19), 2016, pp. 7732–7739, DOI:10.1016/j.ijleo.2016.05.095.
  • [8] ALGREDO-BADILLO U., HALEVI P., Negative refraction and focusing in magnetically coupled L-C loaded transmission lines, Journal of Applied Physics 102(8), 2007, article ID 086104, DOI:10.1063/1.2794558.
  • [9] PRAYAKARAO S., ROBBINS S., KINSEY N., BOLTASSEVA A., SHALAEV V.M., WIESNER U.B., BONNER C.E., HUSSAIN R., NOGINOVA N., NOGINOV M.A., Gyroidal titanium nitride as nonmetallic metamaterial, Optical Materials Express 5(6), 2015, pp. 1316–1322, DOI:10.1364/OME.5.001316.
  • [10] GOVYADINOV A.A., PODOLSKIY V.A., Active metamaterials: sign of refractive index and gain-assisted dispersion management, Applied Physics Letters 91(19), 2007, article ID 191103, DOI:10.1063/1.2800309.
  • [11] BEHERA G., RAMAKRISHNA S.A., Tri-layered composite plasmonic structure with a nanohole array for multiband enhanced absorption at visible to NIR frequencies: plasmonic and metamaterial resonances, Journal of Physics D: Applied Physics 49(7), 2016, article ID 075103, DOI:10.1088/0022-3
  • [12] RAJPUT M., SINHA R.K., All-angle negative refraction for visible light from left-handed metallo-dielectric photonic crystal: theoretical and numerical demonstration with nanophotonic device application, Applied Physics B 98(1), 2010, pp. 99–106, DOI:10.1007/s00340-009-3685-7.
  • [13] NEHMETALLAH G., AYLO R., POWERS P., SARANGAN A., GAO J., LI H., ACHARI A., BANERJEE P.P., Co-sputtered SiC + Ag nanomixtures as visible wavelength negative index metamaterials, Optics Express20(7), 2012, pp. 7095–7100, DOI:10.1364/OE.20.007095.
  • [14] ZHOU J., KOSCHNY TH., KAFESAKI M., ECONOMOU E.N., PENDRY J.B., SOUKOULIS C.M., Saturation of magnetic response of split-ring resonators at optical frequencies, Physical Review Letters 95(22), 2005, article ID 223902, DOI:10.1103/PhysRevLett.95.223902.
  • [15] TAYA S.A., Theoretical investigation of slab waveguide sensor using anisotropic metamaterial, Optica Applicata 45(3), 2015, pp. 405–417, DOI:10.5277/oa150312.
  • [16] ABADLA M.M., TAYA S.A., Theoretical investigation of guided modes in planar waveguides having chiral negative index metamaterial core layer, Optik 131, 2017, pp. 562–573, DOI:10.1016/j.ijleo.2016.11.184.
  • [17] TAYA S.A., Dispersion properties of lossy, dispersive, and anisotropic left-handed material slab waveguide, Optik 126(14), 2015, pp. 1319–1323, DOI:10.1016/j.ijleo.2015.04.013.
  • [18] LAPINE M., GORKUNOV M., RINGHOFER K.H., Nonlinearity of a metamaterial arising from diode insertions into resonant conductive elements, Physical Review E 67(6), 2003, article ID 065601(R), DOI:10.1103/PhysRevE.67.065601.
  • [19] SHADRIVOV I.V., ZHAROV A.A., KIVSHAR Y.S., Second-harmonic generation in nonlinear left-handed metamaterials, Journal of the Optical Society of America B 23(3), 2006, pp. 529–534, DOI:10.1364/JOSAB.23.000529.
  • [20] POPOV A.K., SLABKO V.V., SHALAEV V.M., Second harmonic generation in left-handed materials, Laser Physics Letters 3(6), 2006, pp. 293–297, DOI:10.1002/lapl.200610008.
  • [21] D’AGUANNO G., MATTIUCCI N., BLOEMER M.J., SCALORA M., Large enhancement of second harmonic generation near the zero-n gap of a negative-index Bragg grating, Physical Review E 73(3), 2006, article ID 036603, DOI:10.1103/PhysRevE.73.036603.
  • [22] RAJPUT M., SINHA R.K., RAWAL S., VARSHNEY S.K., UV emission from left-handed material through second harmonic generation: optical nanoantenna and imaging application, Micro and Nano Letters 6(8), 2011, pp. 575–578, DOI:10.1049/mnl.2011.0171.
  • [23] BANERJEE P.P., NEHMETALLAH G., Linear and nonlinear propagation in negative index materials, Journal of the Optical Society of America B 23(11), 2006, pp. 2348–2355, DOI:10.1364/JOSAB.23.002348.
  • [24] POPOV A.K., SALAEV V.M., Negative-index metamaterials: second-harmonic generation, Maney–Rowe relations and parametric amplification, Applied Physics B 84(1–2), 2006, pp. 131–137, DOI:10.1007/s00340-006-2167-4.
  • [25] KLEIN M.W., ENKRICH C., WEGENER M., LINDEN S., Second-harmonic generation from magnetic meta-materials, Science 313(5786), 2006, pp. 502–504, DOI:10.1126/science.1129198.
  • [26] GORKUNOV M.V., SHRADIVOV I.V., KIVSHAR Y.S., Enhanced parametric processes in binary meta-materials, Applied Physics Letters 88(7), 2006, article ID 071912, DOI:10.1063/1.2168755.
  • [27] HAN J., LAKHTAKIA A., QIU C.-W., Terahertz metamaterials with semiconductor split-ring resonators for magnetostatic tunability, Optics Express 16(19), 2008, pp. 14390–14396, DOI:10.1364/OE.16.014390.
  • [28] SARAU G., LAHIRI B., BANZER P., GUPTA P., BHATTACHARYA A., VOLLMER F., CHRISTIANSEN S., Enhanced Raman scattering of graphene using arrays of split ring resonators, Advanced Optical Materials 1(2),2013, pp. 151–157, DOI:10.1002/adom.201200053.
  • [29] KUDYSHEV ZH., GABITOV I., MAIMISTOV A., Effect of phase mismatch on second-harmonic generationin negative-index materials, Physical Review A 87(6), 2013, article ID 063840, DOI:10.1103/PhysRevA.87.063840.727/49/7/075103.
  • [30] CHANDRASEKAR R., EMANI NARESH K., LAGUTCHEV A., SHALAEV V.M., CIRACÌ C., SMITH D.R., KILDISHEV A.V., Second harmonic generation with plasmonic metasurfaces: direct comparison of electric and magnetic resonances, Optical Materials Express 5(11), 2015, pp. 2682–2691, DOI:10.1364/OME.5.002682.
  • [31] GUDDALA S., NARAYANA RAO D., RAMAKRISHNA S.A., Resonant enhancement of Raman scattering in metamaterials with hybrid electromagnetic and plasmonic resonances, Journal of Optics 18(6), 2016, article ID 065104, DOI:10.1088/2040-8978/18/6/065104.
  • [32] MAAS R., VERHAGEN E., PARSONS J., POLMAN A., Negative refractive index and higher-order harmonics in layered metallodielectric optical metamaterials, ACS Photonics 1(8), 2014, pp. 670–676, DOI:10.1021/ph5000874.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1eb9af17-6607-4471-a6f4-41bb45d3fa7c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.