PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Multidimensional simulation of combustion and knock onset in gas engines

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Natural gas fuelled internal combustion engines enable efficient energy conversion with relatively low environmental impact. Depending on the specific application, the available fuel quality, and the emission regulations to be fulfilled, different types of gas-engine combustion systems are in use. The major performance and hence efficiency limiting factors in gas fuelled engines are related to the lower ignitability of natural gas at part load and the appearance of abnormal combustion (knock) at high load conditions. This article provides an overview of the multidimensional CFD simulation workflow for the investigation and assessment of flame propagation and knock onset characteristics in different types of natural gas fuelled internal combustion engines. The most common approaches for simulating flame propagation/combustion under engine conditions are presented together with selected models for describing the pre-flame reactions finally leading to knock onset in the unburned in-cylinder charge ahead of the flame. Based on selected application examples, the models’ performance and capabilities with respect to reflecting the essential characteristics of flame propagation and knock onset are presented.
Słowa kluczowe
Twórcy
autor
  • AVL List GmbH, Advanced Simulation Technologies Hans-List-Platz 1, A-8020 Graz, Austria tel.: +43 316 787 618, +43 316 787 1294, +43 316 787 1198, fax: +43 316 787 777
  • AVL List GmbH, Advanced Simulation Technologies Hans-List-Platz 1, A-8020 Graz, Austria tel.: +43 316 787 618, +43 316 787 1294, +43 316 787 1198, fax: +43 316 787 777
autor
  • AVL List GmbH, Advanced Simulation Technologies Hans-List-Platz 1, A-8020 Graz, Austria tel.: +43 316 787 618, +43 316 787 1294, +43 316 787 1198, fax: +43 316 787 777
Bibliografia
  • [1] Basara, B., An Eddy Viscosity Transport Model Based on Elliptic Relaxation Approach, AIAA Journal, Vol. 44, No. 7, pp. 1686-1690, 2006.
  • [2] Basara, B., Krajnovic, S., Girimaji, S., Pavlovic, Z., Near-Wall Formulation of the Partially Averaged Navier Stokes Turbulence Model, AIAA J., Vol. 49, No. 12, pp. 2627-2636, 2011.
  • [3] Basevich, V. Ya., Belyaev, A. A., Medvedev, S. N., Posvyanskii, V. S., Frolov S. M., Mechanisms of the oxidation and combustion of normal paraffin hydrocarbons, Transition from C1-C10 to C11-C16. Russ. J. Phys. Chem. B 6:161, 2013.
  • [4] Bogensperger, M., Ban, M., Priesching, P., Tatschl, R., Modelling of Premixed SI-Engine Combustion Using AVL FIRE™ – A Validation Study, Proc. Int. Multidimensional Engine Modelling User’s Group Meeting, Detroit, MI 2008.
  • [5] Brower, M., Petersen, E., Metcalfe, W., Curran, H.J., Füri, M., Bourque, G., Aluri, N., Güthe, F., Ignition Delay Time and Laminar flame Speed Calculations for Natural Gas/Hydrogen Blends at Elevated Pressures, Proc. ASME Turbo Expo 2012, Copenhagen 2012.
  • [6] Eder, L., Kiesling, C., Pirker, G., Wimmer, A., Development and Validation of a Reduced Reaction Mechanism for CFD Simulation of Diesel Ignited Gas Engines, Proc. ENCOM 2017, Ludwigburg, Germany 2017.
  • [7] Eder, L., Kiesling, C., Priesching, P., Pirker, G. et al., Multidimensional Modeling of Injection and Combustion Phenomena in a Diesel Ignited Gas Engine, SAE Technical Paper 2017-01-0559, 2017.
  • [8] Frolov, S. M., Ivanov, V. S., Basara, B., Suffa, M., Numerical simulation of flame propagation and localized preflame autoignition in enclosures, Journal of Loss Prevention in the Process Industries, Vol. 26, pp. 302-309, 2013.
  • [9] Guelder, O., Turbulent premixed flame propagation models for different combustion regimes, Symposium (International) on Combustion, Vol. 23, Iss. 1, pp. 743-750, 1991.
  • [10] Halstead, M. P., Kirsch, L. J., Prothero, A., Quinn, C. P., A Mathematical Model for Hydrocarbon Auto-Ignition at High Pressures, Proc. R. Soc. Lond. A., 364, pp. 515-538, 1975.
  • [11] Hahn, J., Mikula, K., Frolkovic, P., Basara, B., Inflow-based gradient finite volume method for a propagation in a normal direction in a polyhedron mesh, Journal of Scientific Computing, Vol. 72, Iss. 1, pp. 442-465, 2017.
  • [12] Huang, J., Hill, P. G., Bushe, W. K., Munshi, S. R., Shock-tube study of methane ignition under engine-relevant conditions: Experiments and modelling, Combust. Flame, Vol. 136, No. 1-2, pp. 25-42, 2004.
  • [13] Khairallah, H., Koylu, U., Combustion Simulation of a Direct Injection Diesel Engine with Hydrogen Fuel Using a 3D Model with Multi-Fuel Chemical Kinetics, SAE Technical Paper 2014-01-1317, 2014.
  • [14] Malin, M., Eder, L., Pirker, G., Redtenbacher, C., Wimmer, A., A Comprehensive Methodology for the Development of Dual Fuel Combustion Concepts for Marine Applications, Proc. Int. Symp. Marine Engineering, Tokyo 2017.
  • [15] Metghalchi, M., Keck, J. C., Burning Velocities of Mixtures of Air with Methanol, Isooctane and Indolene at High Pressure and Temperature, Combustion and Flame, Vol. 48, pp. 191-210, 1982.
  • [16] Peters, N., The turbulent burning velocity for large scale and small scale turbulence, J. Fluid Mechanics 384: 107-132, 1999.
  • [17] Petersen, E. L., Kalitan, D. M., Simmons, S., Bourque, G., Curran, H. J., Simmie, J. M., Methane/propane oxidation at high pressures: Experimental and detailed chemical kinetic modeling, Proc. Combust. Inst., Vol. 31, I, pp. 447-454, 2007.
  • [18] Priesching, P., Bogensperger, M., Schneider, J., Poredos, A., About Describing the Knocking Combustion in Gasoline and Gas Engines by CFD Methods, SAE Technical Paper 2015-01-1911, 2015.
  • [19] Pyszczek, R., Schmalhorst, C., Teodorczyk, A., Numerical investigation on diesel combustion and emissions with a standard combustion model and detailed chemistry, Combustion Engines, ISSN 2300-9896, 162(3), pp. 19-33, 2015.
  • [20] Šarić, S., Basara, B., A Hybrid Wall Heat Transfer Model for IC Engine Simulations, SAE Int. J. Engines Vol. 8, No. 2, pp. 411-418, 2015.
  • [21] Smith, P., Golden, M., Frenklach, M., Eiteneer, B., Goldenberg, M, Bowman, C. T., Hanson, R. K., Song, S., Gardiner, W. C., Lissianski, V., Qin, Z., GRI 3.0 Mechanism, Gas Research Institute – GRI, 2000, http://combustion.berkeley.edu/gri-mech/index.html, accessed 07.02.2018.
  • [22] Tap, F. A., Meijer, C., Priesching, P., Predictive Combustion CFD Simulations for the Design of Modern Diesel Engines, Proc. THIESEL 2016 Conference on Thermo- and Fluid-Dynamic Processes in Direct Injection Engines, Valencia, Spain 2016.
  • [23] Tatschl, R., Winklhofer, E., Fuchs, H., Kotnik, G., Priesching, P., Analysis of Flame Propagation and Knock Onset for Full Load SI-Engine Combustion Optimization – A Joint Numerical and Experimental Approach, Proc. NAFEMS World Congress, Malta 2005.
  • [24] Tatschl, R., Bogensperger, M., Pavlovic, Z., Priesching, P., Schuemie, H., Vitek, O., Macek, J., LES Simulation of Flame Propagation in a Direct-Injection SI-Engine to Identify Causes of Cycle-to-Cycle Combustion Variations, SAE Technical Paper 2013-01-1084, 2013.
  • [25] Vitek, O., Macek, J., Pavlovic, Z., Tatschl, R., Statistical Analysis of Detailed 3D CFD LES Simulations with Regard to CCV Modeling, J. Middle European Construction and Design of Cars, Vol. 14, Iss.1, 2016.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1eb6c8f7-7f1e-4f42-bac2-593aeccc1ee8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.