Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The interaction of internal and surface waves in a two-layer fluid with free surface has been considered. The stability of wave packets propagation on the contact surface and free surface of hydrodynamic system „layer with rigid bottom - layer with free surface” was investigated. The amplitudes of the second harmonics of the elevations of the contact surface and the free surface are investigated.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
3--9
Opis fizyczny
Bibliogr. 33 poz., wykr.
Twórcy
autor
- Department of Applied Mathematics, Statistics and Economics, State Pedagogical University, Kirovograd, Ukraine, +38-098-902-67-90
Bibliografia
- [1] Segur H., Hammack J.L. “Soliton models of long internal”.J.Fluid Mech.- 1982.- 118.- P. 285-304.
- [2] Yuen H.C., Lake B.M. “Nonlinear dynamics of deep-water waves”. Advances in Appl. Mech.- New York, London.- 1982.- 22.-P. 33-45.
- [3] Ablowitz M., Segur H. “Solitons and the Inverse Scattering Transform”.- Moscow: Mir, 1987.- 485 p. (In Russian)
- [4] Whitham J. “Linear and nonlinear waves”.- Moscow: Mir, 1977.- 622 p. (In Russian)
- [5] Bhatnagar P.L. “Nonlinear waves in one-dimensional dispersive systems”.- Oxford: Clarendon Press, 1979.
- [6] Lamb J. “Introduction to the theory of solitons”.- Moscow: Mir, 1983.- 294 p. (In Russian)
- [7] Selezov I.T., Korsunsky S.V. “Wave propagation along the interface between the liquid metal and electrolyte”. Proc. International Conference „MHD Processes to Protection of Environment”. Part 1.-i.- 1992.- P. 111-117.
- [8] Selezov I.T., Huq P. “Interfacial solitary waves in a three-fluid medium with sourth”. 2nd Eur. Fluid Mech. Conf., Warsaw, 20-24 Sept., 1994, Abstr. Pap. –Warsaw,1994.-250 p.
- [9] Bontozoglou V. “Weakly nonlinear Kelvin-Helmholz waters between fluids of finite depth”. Int. J. Multiphase Flow.- 1991.- 17, N4.- P. 509-518.
- [10] Dias F., Kharif Ch. “Nonlinear gravity and capillary-gravity waves”. Part 7. Importance of surface tension Effects, Annu. Rev. Fluid Mech.- 1999.- N31.-P. 301—346
- [11] Camassa R., Choi W. “On the realm of validity of strongly nonlinear asymptotic approximations for internal waves” J. Fluid Mechanics.- 2006.- 549.- P.1-23.
- [12] Camassa R., Viotti C. “A model for large-amplitude internal waves with finite-thickness pycnocline” Acta Appl. Math.- 2012.- ı 1.- P. 75 – 84.
- [13] Debsarma S., Das K. P. “Fourth-order nonlinear evolution equations for a capillary-gravity wave packet in the presence of another wave packet in deep water” Phys. Fluids. – 2007. – 19.– P. 097101-1–097101-16.
- [14] Debsarma, S., Das, K.P. & Kirby, J.T. “Fully nonlinear higherorder model equations for long internal waves in a two-fluid system” J. Fluid Mech.- 2010.- 654.- P. 281 – 303.
- [15] Kakinuma T., Yamashita K., Nakayama K. “Surface and internal waves due to a moving load on a very large floating structure” J. Appl. Math.- 2012.- 14 p.
- [16] Choi W., Camassa R. “Weakly nonlinear internal waves in a two-fluid system”. J. Fluid Mech.- 1996.- 313.- P. 83-103.
- [17] Holyer J.Y. “Large amplitude progressive interfacial waves”. J. Fluid Mech.- 1979.- 118(3).- P. 433-448.
- [18] Bourtos Y.Z., Abl-el-Malex M.B., Tewfick A.H. “A format expansion procedure for the internal solitary wave problem in a two-fluid system of constant topography”. Acta Mechanica.- 1991.- 88.- P. 172-197.
- [19] Nayfeh A.H. “Nonlinear propagation of wave-packets on fluid interface”. Trans. ASME., Ser. E.- 1976.- 43, N4.- P. 584-588.
- [20] Hasimoto H., Ono H. “Nonlinear modulation of gravity waves”. J. of the Phys. Soc. of Japen.- 1972.- 33.- P. 805-811.
- [21] Duncan J.H. “Spilling breakers”. Annu. Rev. Fluid Mech.- 2001.- 33.- P. 519-547.
- [22] Baker G.R. Meiron D.I., Orszag S.A. “Generalized vortex methods of free-surface flow problems”. J.Fluid Mech.- 1982.- N123.- P. 477-501.
- [23] Bourtos Y.Z., Abl-el-Malex M.B., Tewfick A.H. “A format expansion procedure for the internal solitary wave problem in a two-fluid system of constant topography”. Acta Mechanica.- 1991.- 88.- P. 172-197.
- [24] Chen Y., Liu P.L.-F. “The unified Kadomtsev - Petviashvily equation for interfacial waves”. J.Fluid Mech.- 1995.- N228.- P. 383-408.
- [25] Stamp A.P. , Jacka M. “Deep-water internal solitary waves”. J. Fluid Mech.- 1995.- 305.- P. 347-371.
- [26] Trulsen K. “Wave kinematics computed with the nonlinear Schroedinger method for deep water”. Trans. ASME.-1999.- N121.- P. 126-130.
- [27] Selezov, I.T., Avramenko, O.V. “The evolution equation of the third order for the nonlinear wave-packets at near-critical wave numbers”. Dynamical Systems 17 (2001): 58-67 (in Russian).
- [28] Selezov, I., Avramenko, O., Kharif, C., Trulsen, K. “Higher asymptotic approximations for nonlinear internal waves in fluid”. Int. Conf. „Nonlinear Partial differential equations” Book of abstracts, Kyiv. 22-28 Aug, (2001): 105-106.
- [29] Avramenko, O.V., Selezov, I.T. “The stability of the wave packets in stratified hydrodynamic systems with surface tension”. Applied Hydromechanics 4 (2001): 38—46 (in Russian).
- [30] Selezov, I.T., Avramenko, O.V., Hurtovyy, Y.V. “Some features of the wave propagating in the two-layer fluid”. Applied Hydromechanics 79 (2005): 80-89 (in Russian).
- [31] Selezov, I.T., Avramenko, O.V., Hurtovyy, Y.V. “The stability of the wave packets in the two-layer hydrodynamic system”. Applied Hydromechanics 90 (2006): 60-65 (in Russian).
- [32] Selezov, I.T., Avramenko, O.V., Hurtovyy, Y.V., Naradovy, V.V. “The nonlinear interaction of internal and external gravity waves in two-layer fluid with free surface”. Math. methods and physical and mechanical fields 52 (2009): 72-83 (in Russian).
- [33] Selezov, I.T., Avramenko, O.V., Naradovy, V.V. “Some features of nonlinear wave propagating in two-layer fluid with free surface”. Dynamical Systems 29 (2011): 53-68 (in Russian).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1eb5af57-1cea-467f-9b59-477b77f73835