PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A strain energy density theory for mixed mode crack propagation in rubber-like materials

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, a numerical modeling of crack propagation for rubber-like materials is presented. This technique aims at simulating the crack growth under mixed-mode loading based on the strain energy density approach. At each crack increment length, the kinking angle is evaluated as a function of the minimum strain energy density (MSED) around the crack tip, using the Ansys Parametric Design Language (APDL). In this work, numerical examples are illustrated to demonstrate the effectiveness, robustness and accuracy of the computational algorithm to predict the crack propagation path. The results obtained show that the plan of crack propagation is perpendicular to the direction of the maximum principal stretch. Moreover, in the framework of linear elastic fracture mechanics (LEFM), the minimum values of the density are reached at the points corresponding to the crack propagation direction.
Rocznik
Strony
1417--1431
Opis fizyczny
Bibliogr. 42 poz., rys., tab.
Twórcy
  • Djillali Liabes University of Sidi Bel-Abbes, Mechanical Engineering Department, Laboratory of Materials and Reactive Systems, Larbi Ben Mhidi, Algeria
autor
  • Mechanics Laboratory of Lille, CNRS UMR 8107, Ecole Polytech’Lille, University of Lille, France
autor
  • Djillali Liabes University of Sidi Bel-Abbes, Mechanics and Physics of Materials Laboratory, Larbi Ben Mhidi, Algeria
autor
  • Djillali Liabes University of Sidi Bel-Abbes, Mechanics and Physics of Materials Laboratory, Larbi Ben Mhidi, Algeria
autor
  • Djillali Liabes University of Sidi Bel-Abbes, Mechanics and Physics of Materials Laboratory, Larbi Ben Mhidi, Algeria
Bibliografia
  • 1. Alshoaibi A., Ariffin A.K., 2006, Finite element simulation of stress intensity factors in elasticplastic crack growth, Journal of Zhejiang University – Science A, 7, 1336-1342
  • 2. Alshoaibi A.M., Ariffin A.K., 2008. Fatigue life and crack path prediction in 2D structural components using an adaptive finite element strategy, International Journal of Mechanical and Materials Engineering, 3, 1, 97-104
  • 3. Andrews E.H., 1974, A generalised theory of fracture mechanics, Journal of Materials Science, 9, 887-894
  • 4. ANSYS, 2009, Inc. Programmer’s Manual for Mechnical APDL, Release 12.1
  • 5. Ayatollahi M.R., Sedighiani K., 2012, Mode I fracture initiation in limestone by strain energy density criterion, Journal of Theoretical and Applied Mechanic, 57, 14-18
  • 6. Barsoum R.S., 1974, On the use of isoparametric finite element in linear fracture mechanics, International Journal for Numerical Methods in Engineering, 10, 25-37
  • 7. Benouis A., Boulenouar A., Benseddiq N., Serier B., 2015, Numerical analysis of crack propagation in cement PMMA: application of SED approach, Structural Engineering and Mechanics, 55, 93-109
  • 8. Bian L., Taheri F., 2011, A proposed maximum ratio criterion applied to mixed mode fatigue crack propagation, Materials and Design, 32, 2066-2072
  • 9. Boulenouar A., Benouis A., Benseddiq N., 2016, Numerical modelling of crack propagation in cement PMMA: Comparison of different criteria, Materials Research Bulletin, in press
  • 10. Boulenouar A., Benseddiq N., Mazari M., 2013a, Strain energy density prediction of crack propagation for 2D linear elastic materials, Journal of Theoretical and Applied Mechanic, 67/68, 29-37
  • 11. Boulenouar A., Benseddiq N., Mazari M., 2013b, Two-dimensional numerical estimation of stress intensity factors and crack propagation in linear elastic analysis, Engineering, Technology and Applied Science Research, ETASR, 3, 506-510
  • 12. Boulenouar A., Benseddiq N., Mazari M., 2014, FE Model for linear-elastic mixed mode loading: estimation of SIFs and crack propagation, Journal of Theoretical and Applied Mechanic, 52, 373-383
  • 13. Boulenouar A., Mazari M., 2009, Study of elastomers behavior at rupture based on the first Seth strain measures invariant, Computational Materials Science, 45, 966-971
  • 14. Carpinteri A., 1984, Size effects in material strength due to crack growth and material nonlinearity, Journal of Theoretical and Applied Mechanic, 2, 39-45
  • 15. Chang K.J., 1981a, Further studies of the maximum stress criterion on the angled crack problem, Engineering Fracture Mechanics, 14, 125
  • 16. Chang K.J., 1981b, On the maximum strain criterion - a new approach to the angled crack problem, Engineering Fracture Mechanics, 14, 107-124
  • 17. Choi D.H., Choi H.Y., Lee D., 2006, Fatigue life prediction of in-plane gusset welded joints using strain energy density factor approach, Journal of Theoretical and Applied Mechanic, 45, 108-116
  • 18. Chow C.L., Xu J., 1985, Application of the strain energy density criterion to ductile fracture, Journal of Theoretical and Applied Mechanic, 3, 185-191
  • 19. Erdogan F., Sih G.C., 1963, On the crack extension in plates under plane loading and transverse shear, Journal of Basic Engineering, 85, 519-527
  • 20. Fajdiga G., Ren Z., Kramar J., 2007, Comparison of virtual crack extension and strain energy density methods applied to contact surface crack growth, Engineering Fracture Mechanics, 74, 2721-2734
  • 21. Greensmith H.W., 1963, Rupture of rubber-X. The change in stored energy on making a small cut in a test piece held in simple extension, Journal of Applied Polymer Science, 7, 993-1002
  • 22. Griffith A.A., 1920, The phenomenon of rupture and flow in solids, Philosophical Transactions of the Royal Society A, 221, 163-198
  • 23. Griffith A.A., 1924, The theory of rupture, Proceedings of 1st International Conference for Applied Mechanics, Delft, 55-63
  • 24. Hamdi A., 2006, Crit`ere de rupture gnralis pour les ´elastom`eres vulcanisables et thermoplastiques, Th`ese de doctorat, Universit des Sciences et Technologies de Lille
  • 25. Hamdi A., Aıt Hocine N., Naıt Abdelaziz M., Benseddiq N., 2007, Fracture of elastomers under static mixed mode: the strain-energy-density factor, International Journal of Fracture, 144, 65-75
  • 26. Hamdi A., Naıt Abdelaziz M., Aıt Hocine N., Benseddiq N., Heuillet P., 2006, Fracture criteria of rubber like-materials under plane stress conditions, Polymer Testing, 25, 994-1005
  • 27. Kipp M.E., Sih G.C., 1975, The strain energy density failure criterion applied to notched elastic solids, International Journal of Solids and Structures, 11, 153-173
  • 28. Komori K., 2005, Ductile fracture criteria for simulating shear by node separation method, Journal of Theoretical and Applied Mechanic, 43, 101-114
  • 29. Legrain G., 2007, Extension de l’approche X-FEM aux grandes transformations pour la fissuration des milieux hyperlastiques, Th`ese de Doctorat, Ecole Centrale Nantes, Universit´e de Nantes, France
  • 30. Legrain G., Moes N., Verron E., 2005, Stress analysis around crack tips in finite strain problems using the extended Finite Element Method, International Journal for Numerical Methods in Engineering, 63, 2, 290-314
  • 31. Maiti S.K., Smith R.A., 1983, Comparison of the criteria for mixed mode brittle fracture based on the preinstability stress-strain field, International Journal of Fracture, 23, 281-295
  • 32. Matic P., 1985, Numerically predicting ductile material behavior from tensile specimen response, Journal of Theoretical and Applied Mechanic, 4, 13-28
  • 33. Ogden R.W., 1984, Non Linear Elastic Deformation, Ellis Horwood Limited Publishers
  • 34. Pegorin F., Kotousov A., Berto F., Swain M.V., Sornsuwan T., 2012, Strain energy density approach for failure evaluation of occlusal loaded ceramic tooth crowns, Journal of Theoretical and Applied Mechanic, 5, 44-50
  • 35. Rivlin R.S., Thomas A.G., 1953, Rupture of rubber. I. Characteristic energy for tearing, Journal of Polymer Science, 10, 291-318
  • 36. Sih G.C., 1973, Some basic problems in fracture mechanics and new concepts, Engineering Fracture Mechanics, 5, 365-377
  • 37. Sih G.C., 1974, Strain energy-density factor applied to mixed mode crack problems, International Journal of Fracture, 10, 205
  • 38. Sih G.C., Barthelemy B.M., 1980, Mixed mode fatigue crack growth predictions, Engineering Fracture Mechanics, 13, 439-451
  • 39. Sih G.C., Macdonald B., 1974, Fracture mechanics applied to engineering problems – strain energy density fracture criterion, Engineering Fracture Mechanics, 6, 361-386
  • 40. Theocaris P.S., 1984, A higher-order approximation for the T-criterion of fracture in biaxial fields, Engineering Fracture Mechanics, 19, 975
  • 41. Wu H.C., 1974, Dual failure criterion for plane concrete, Journal of the Engineering Mechanics Division, 100, 1167
  • 42. Yeoh O.H., 1990, Characterization of elastic properties of carbon black filled rubber vulcanizates, Rubber Chemistry and Technology, 63, 792-805
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniajacą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1eb491b2-efb7-416a-a497-f2dcac19e237
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.