Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This work aimed to evaluate and characterize the motion of the fourth and fifth lumbar vertebrae functional spinal unit with spondylolysis and different types of grade 1 spondylolisthesis using the finite element method. Methods: Nine nonlinear three-dimensional finite element models were reconstructed from computed tomography scans to five educational fourth and fifth lumbar vertebrae models. The intervertebral disc was simulated in two conditions: four models with healthy discs and five models with degenerated discs. Each model consisted of two vertebrae divided into three bony parts, two endplates, an intervertebral disc and five ligaments. The flexion, extension, lateral bending and rotation loading conditions were simulated, and the ranges of motion were measured and plotted. Results: In flexion, compared to the baseline intact model, the most significant increase in the range of motion was experienced by the isthmic spondylolisthesis model, while in extension, a reduction in the range of motion was measured in both prolonged pars and unilateral pars defect and healthy disc models. In degenerated disc results, the unilateral pars defect and degenerative spondylolisthesis models had the lowest range of motion. No large differences were noticed in lateral bending results. Lastly, in axial rotation, the most significant increase in the range of motion was measured in the isthmic spondylolisthesis model, followed by the spondylolysis model and similarly, in the degenerated disc models. Conclusions: The isthmic spondylolisthesis displayed hypermobility in flexion and rotation. Moreover, the model with unilateral pars defect showed hypermobility in axial rotation only. Finally, hypomobility in all movements was noticed with the degenerative spondylolisthesis model.
Czasopismo
Rocznik
Tom
Strony
177--186
Opis fizyczny
Bibliogr. 41 poz., rys., tab., wykr.
Twórcy
autor
- Department of Biomedical Engineering, College of Engineering, Al-Nahrain University, Jadriya, Baghdad, Iraq.
autor
- Department of Biomedical Engineering, College of Engineering, Al-Nahrain University, Jadriya, Baghdad, Iraq.
autor
- Iraqi National Cancer Research Center, University of Baghdad, Baghdad, Iraq.
Bibliografia
- [1] AL-RUBAIE S.Y., HAMANDI S.J., MOHSON K.I., Kinematic validation of an intact L4–L5 spinal unit finite element model constructed from an educational model, Int. J. Mech. Eng., 2022, 7 (2).
- [2] BASHKUEV M., REITMAIER S., SCHMIDT H., Is the sheep a suitable model to study the mechanical alterations of disc degeneration in humans? A probabilistic finite element model study, J. Biomech., 2019, 84, DOI: 10.1016/J.JBIOMECH.2018.12.042.
- [3] CHAMOLI U., CHEN A.S., DIWAN A.D., Interpedicular kinematics in an in vitro biomechanical assessment of a bilateral lumbar spondylolytic defect, Clin. Biomech., 2014, 29 (10), DOI: 10.1016/J.CLINBIOMECH.2014.10.002.
- [4] CHEN L., FENG Y., CHE C.Q., GU Y., WANG L.J., YANG H.L., Influence of Sacral Slope on the Loading of Pedicle Screws in Postoperative L5/S1 Isthmic Spondylolisthesis Patient: A Finite Element Analysis, Spine, 2016, 41 (23), DOI: 10.1097/BRS.0000000000001632.
- [5] CHUANG W.H., KUO Y.J., LIN S.C., WANG C.W., CHEN S.H., CHEN Y.J., HWANG J.R., Comparison among load-, ROM-, and displacement-controlled methods used in the lumbosacral nonlinear finite-element analysis, Spine, 2013, 38 (5), DOI: 10.1097/BRS.0B013E31828251F9.
- [6] DENARD P.J., HOLTON K.F., MILLER J., FINK H.A., KADO D.M., YOO J.U., MARSHALL L.M., Lumbar spondylolisthesis among elderly men: prevalence, correlates, and progression, Spine, 2010, 35 (10), DOI: 10.1097/BRS.0b013e3181bd9e19.
- [7] EL-RICH M., VILLEMURE I., LABELLE H., AUBIN C.E., Mechanical loading effects on isthmic spondylolytic lumbar segment: finite element modelling using a personalised geometry, Comput. Methods Biomech. Biomed. Engin., 2009, 12 (1), DOI: 10.1080/10255840802069823.
- [8] FAN J., YU G.R., LIU F., ZHAO J., ZHAO W.D., A biomechanical study on the direct repair of spondylolysis by different techniques of fixation, Orthop. Surg., 2010, 2 (1), DOI: 10.1111/J.1757-7861.2009.00064.X.
- [9] GARET M., REIMAN M.P., MATHERS J., SYLVAIN J., Nonoperative Treatment in Lumbar Spondylolysis and Spondylolisthesis: A Systematic Review, Sports Health, 2013, 5 (3), DOI: 10.1177/1941738113480936.
- [10] HADDAS R., XU M., LIEBERMAN I., YANG J., Finite Element Based-Analysis for Pre and Post Lumbar Fusion of Adult Degenerative Scoliosis Patients, Spine Deform, 2019, 7 (4), DOI: 10.1016/J.JSPD.2018.11.008.
- [11] HAJ-ALI R., WOLFSON R., MASHARAWI Y., A patient specific computational biomechanical model for the entire lumbosacral spinal unit with imposed spondylolysis, Clin. Biomech., 2019, 68, DOI: 10.1016/J.CLINBIOMECH.2019.05.022.
- [12] HEUER F., SCHMIDT H., KLEZL Z., CLAES L., WILKE H.J., Stepwise reduction of functional spinal structures increase range of motion and change lordosis angle, J. Biomech., 2007, 40 (2), DOI: 10.1016/J.JBIOMECH.2006.01.007.
- [13] JARAMILLO H.E., GÓMEZ L., GARCÍA J.J., A finite element model of the L4-L5-S1 human spine segment including the heterogeneity and anisotropy of the discs, Acta Bioeng. Biomech., 2015, 17 (2), DOI: 10.5277/ ABB-00046-2014-02.
- [14] JAYAKUMAR P., NNADI C., SAIFUDDIN A., MACSWEENEY E., CASEY A., Dynamic degenerative lumbar spondylolisthesis: diagnosis with axial loaded magnetic resonance imaging, Spine, 2006, 31 (10), DOI: 10.1097/01.BRS.0000216602.98524.07.
- [15] JIANG S., LI W., Biomechanical study of proximal adjacent segment degeneration after posterior lumbar interbody Fusion and fixation: a finite element analysis, J. Orthop. Surg. Res., 2019, 14 (1), DOI: 10.1186/S13018-019-1150-9.
- [16] JOSZKO K., GZIK M., WOLAŃSKI W., GZIK-ZROSKA B., KAWLEWSKA E., Biomechanical evaluation of human lumbar spine in spondylolisthesis, J. Appl. Biomed., 2018, 16 (1), DOI: 10.1016/J.JAB.2017.10.004.
- [17] KHAN S.A., SATTAR A., KHANZADA U., ADEL H., ADIL S.O., HUSSAIN M., Facture of the Pars Interarticularis with or without Spondylolisthesis in an Adult Population in a Developing Country: Evaluation by Multidetector Computed Tomography, Asian Spine J., 2017, 11 (3), DOI: 10.4184/ASJ.2017.11.3.437.
- [18] LING Q., HE E., ZHANG H., LIN H., HUANG W., A novel narrow surface cage for full endoscopic oblique lateral lumbar interbody fusion: A finite element study, J. Orthop. Sci., 2019, 24 (6), DOI: 10.1016/J.JOS.2019.08.013.
- [19] LIU T., EL-RICH M., Effects of nucleus pulposus location on spinal loads and joint centers of rotation and reaction during forward flexion: A combined finite element and Musculoskeletal study, J. Biomech., 2020, 104, DOI: 10.1016/J.JBIOMECH.2020.109740.
- [20] MASNI-AZIAN, TANAKA M., Biomechanical investigation on the influence of the regional material degeneration of an intervertebral disc in a lower lumbar spinal unit: A finite element study, Comput. Biol. Med., 2018, 98, DOI: 10.1016/J.COMPBIOMED.2018.05.010.
- [21] MATSUNAGA S., IJIRI K., HAYASHI K., Nonsurgically manager patients with degenerative spondylolisthesis: a 10- to 18-year follow-up study, J. Neurosurg., 2000, 93 (2), DOI: 10.3171/SPI.2000.93.2.0194.
- [22] MCGREGOR A.H., CATTERMOLE H.R., HUGHES S.P.F., Global spinal motion in subjects with lumbar spondylolysis and spondylolisthesis: does the grade or type of slip affect global spinal motion?, Spine, 2001, 26 (3), DOI: 10.1097/00007632-200102010-00013.
- [23] MIAO J., WANG S., WAN Z., PARK W.M., XIA Q., WOOD K., LI G., Motion characteristics of the vertebral segments with lumbar degenerative spondylolisthesis in elderly patients, Eur. Spine J., 2013, 22 (2), DOI: 10.1007/s00586-012-2428-3.
- [24] NASERKHAKI S., ARJMAND N., SHIRAZI-ADL A., FARAHMAND F., EL-RICH M., Effects of eight different ligament property datasets on biomechanics of a lumbar L4-L5 finite element model, J. Biomech., 2018, 70, DOI: 10.1016/J.JBIOMECH.2017.05.003.
- [25] PENG Y., DU X., HUANG L., LI J., ZHAN R., WANG W., XU B., WU S., PENG C., CHEN S., Optimizing bone cement stiffness for vertebroplasty through biomechanical effects analysis based on patientspecific three-dimensional finite element modeling, Med. Biol. Eng. Comput., 2018, 56 (11), DOI: 10.1007/S11517-018-1844-X.
- [26] PHAN K.H., DAUBS M.D., KUPPERMAN A.I., SCOTT T.P., WANG J.C., Kinematic analysis of diseased and adjacent segments in degenerative lumbar spondylolisthesis, Spine J., 2015, 15 (2), DOI: 10.1016/J.SPINEE.2014.08.453.
- [27] RAMAKRISHNA V.A.S., CHAMOLI U., VIGLIONE L.L., TSAFNAT N., DIWAN A.D., Mild (not severe) disc degeneration is implicated in the progression of bilateral L5 spondylolysis to spondylolisthesis, BMC Musculoskelet. Disord., 2018, 19 (1), DOI: 10.1186/S12891-018-2011-0.
- [28] RAMAKRISHNA V.A.S., CHAMOLI U., VIGLIONE L.L., TSAFNAT N., DIWAN A.D., The Role of Sacral Slope in the Progression of a Bilateral Spondylolytic Defect at L5 to Spondylolisthesis: A Biomechanical Investigation Using Finite Element Analysis, Glob Spine J., 2018, 8 (5), DOI: 10.1177/2192568217735802.
- [29] REMUS R., LIPPHAUS A., NEUMANN M., BENDER B., Calibration and validation of a novel hybrid model of the lumbosacral spine in ArtiSynth-The passive structures, PLoS One, 2021, 16 (4), DOI: 10.1371/JOURNAL.PONE.0250456.
- [30] ROHLMANN A., ZANDER T., SCHMIDT H., WILKE H.J., BERGMANN G., Analysis of the influence of disc degeneration on the mechanical behaviour of a lumbar motion segment using the finite element method, J. Biomech., 2006, 39 (13), DOI: 10.1016/J.JBIOMECH.2005.07.026.
- [31] RUBERTÉ L.M., NATARAJAN R.N., ANDERSSON G.B., Influence of single-level lumbar degenerative disc disease on the behavior of the adjacent segments-a finite element model study, J. Biomech., 2009, 42 (3), DOI: 10.1016/J.JBIOMECH.2008.11.024.
- [32] SCHMIDT H., GALBUSERA F., ROHLMANN A., ZANDER T., WILKE H.J., Effect of multilevel lumbar disc arthroplasty on spine kinematics and facet joint loads in flexion and extension: a finite element analysis, Eur. Spine J., 2012, 21, DOI: 10.1007/S00586-010-1382-1.
- [33] SCHMIDT H., HEUER F., DRUMM J., KLEZL Z., CLAES L., WILKE H.J., Application of a calibration method provides more realistic results for a finite element model of a lumbar spinal segment, Clin. Biomech., 2007, 22 (4), DOI: 10.1016/J.CLINBIOMECH.2006.11.008.
- [34] SPIVAK J.M., KUMMER F.J., CHEN D., QUIRNO M., KAMERLINK J.R., Intervertebral foramen size and volume changes in low grade, low dysplasia isthmic spondylolisthesis, Spine, 2010, 35 (20), DOI: 10.1097/BRS.0B013E3181CCC59D.
- [35] STERBA M., ARNOUX P.J., LABELLE H., WARNER W.C., AUBIN C.É., Biomechanical analysis of spino-pelvic postural configurations in spondylolysis subjected to various sportrelated dynamic loading conditions, Eur. Spine J., 2018, 27 (8), DOI: 10.1007/S00586-018-5667-0.
- [36] WANG J.P., ZHONG Z.C., CHENG C.K., CHEN C.S., YU C.H., CHANG T.K., WEI S.H., Finite element analysis of the spondylolysis in lumbar spine, Biomed. Mater Eng., 2006, 16 (5).
- [37] WANG W., AUBIN C.E., CAHILL P., BARAN G., ARNOUX P.J., PARENT S., LABELLE H., Biomechanics of high-grade spondylolisthesis with and without reduction, Med. Biol. Eng. Comput., 2016, 54 (4), DOI: 10.1007/S11517-015-1353-0.
- [38] WEISSE B., AIYANGAR A.K., AFFOLTER C., GANDER R., TERRASI G.P., PLOEG H., Determination of the translational and rotational stiffnesses of an L4–L5 functional spinal unit using a specimen-specific finite element model, J. Mech. Behav. Biomed. Mater, 2012, 13, DOI: 10.1016/J.JMBBM.2012.04.002.
- [39] XIAO Z., WANG L., GONG H., ZHU D., ZHANG X., A non-linear finite element model of human L4–L5 lumbar spinal segment with three-dimensional solid element ligaments, Theor. Appl. Mech. Lett., 2011, 1 (6), DOI: 10.1063/2.1106401.
- [40] YAO Q., WANG S., SHIN J.H., LI G., WOOD K.B., Lumbar Facet Joint Motion in Patients with Degenerative Spondylolisthesis, J. Spinal Disord. Tech., 2013, 26 (1), DOI: 10.1097/BSD.0B013E31827A254F.
- [41] ZHU R., NIU W.X., ZENG Z.L., TONG J.H., ZHEN Z.W., ZHOU S., YU Y., CHENG L.M., The effects of muscle weakness on degenerative spondylolisthesis: A finite element study, Clin. Biomech., 2017, 41, DOI: 10.1016/J.CLINBIOMECH.2016.11.007.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1eb2e294-2481-44a7-95f8-fc1f0bba1a73