PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical Simulation and Analysis of Airflow in the Condensing Zone of Compact Spinning with Lattice Apron

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The airflow field pattern in the condensing zone plays a vital role in the pneumatic compact spinning, which significantly affects the yarn's qualities. This study aimed to analyze the effects of the different negative air pressures on fiber condensing in compact spinning with lattice apron using ANSYS. The results of airflow simulations reveal that by increasing the negative pressure, the flow velocity increases, leading to a more tremendous increase in the transverse condensing effects. Additionally, a better convergence led to reduced fiber width and eliminated the spinning triangle. Experimental results showed that the three yarns spun with the highest negative pressure had better strength, hairiness, and evenness than those spun with lower negative pressure.
Rocznik
Strony
258--263
Opis fizyczny
Bibliogr. 29 poz.
Twórcy
  • College of Textiles, Donghua University, Shanghai 201620, China
  • College of Engineering Technology of Industries, Sudan University of science and technology, Khartoum, Sudan
  • Key Laboratory of Textile Science & Technology of Ministry of Education, College of Textiles, Donghua University
autor
  • College of Textiles, Donghua University, Shanghai 201620, China
  • Key Laboratory of Textile Science & Technology of Ministry of Education, College of Textiles, Donghua University
Bibliografia
  • [1] Su, X., Gao, W., Liu, X. (2016). Numerical simulation of flow field in complete condensing spinning: Effects of suction unxit and guiding device. The Journal of the Textile Institute, 107(7), 811–824.
  • [2] Liu, X., Zhang, H., Su, X. (2016). Comparative analysis on pneumatic compact spinning systems. International Journal of Clothing Science and Technology, 28(4), 400–419.
  • [3] Su, X., Liu, X., Liu, X. (2018). Numerical simulation of flow field in the pneumatic compact spinning systems using Finite Element Method. International Journal of Clothing Science and Technology, 30(3), 363–379.
  • [4] Su, X., Gao, W., Liu, X., Xie, C., Xu, B. (2016). Research on the performance of a drafting device for the four-line compact spinning system. Fibres & Textiles in Eastern Europe, 24(2), 44–51.
  • [5] Ma, H.-C., Cheng, L-.D., Yan, G.-X., Xu, S.-P. (2014). Studies of negative pressure and cleaning condition effects on gathering for ramie compact spinning with a suction groove. Fibres & Textiles in Eastern Europe, 105(3), 54–57.
  • [6] Raian, S., Hossen, J. (2018). Effect of lattice apron age on the quality of compact ring-spun yarns. Trends in Textile Engineering & Fashion Technology, 3(4), 1–10.
  • [7] Shahid, M. A., Hossain, D., Nakib-Ul-Hasanb Md, ArifulIslamc, Md. (2014). Comparative study of ring and compact yarn-based knitted fabric. Procedia Engineering, 90, 154–159.
  • [8] El-Sayed, M., Sanad, S. (2010). Compact spinning technology. In: Advances in yarn spinning technology. Elsevier. pp. 237–260.
  • [9] Çelik, P., Kadoglu, H. (2004). A research on the compact spinning for long staple yarns. Fibres & Textiles in Eastern Europe, 12(4), 48.
  • [10] Basal, G., Oxenham, W. (2006). Comparison of properties and structures of compact and conventional spun yarns. Textile Research Journal, 76(7), 567–575.
  • [11] Jackowski, T., Cyniak, D., Czekalski, J. (2004). Compact cotton yarn. Fibres & Textiles in Eastern Europe, 12(4), 22–26.
  • [12] Baldua, R., Tyagi, G. (2018). Influence of spinning variables on migration parameters of compact and ring-spun yarns. Indian Journal of Fibre & Textile Research, 34, 333–337.
  • [13] Altas, S., Kadoğlu, H. (2012). Comparison of conventional ring, mechanical compact and pneumatic compact yarn spinning systems. Journal of Engineered Fibers and Fabrics, 7(1), 87–100.
  • [14] Cheng, L., Xue, W., Wang, K. (2018). Nozzle based compact spinning. Journal of Textile Engineering & Fashion Technology, 4(2), 170–172.
  • [15] Zhuan Yong, Z., Yun, D. Z., Zhi, H. H., Yan, W., Long, D. C. (2009). Studies of flexible fiber trajectory and its pneumatic condensing mechanism in compact spinning with lattice apron. Textile Research Journal, 80(8), 712–719.
  • [16] Bodek, A. (2018). Research on the qualities of cellulosic yarn. Fibres & Textiles in Eastern Europe, 26, 30–35.
  • [17] Khan, M., Begum, H., Sheikh, M. (2020). An overview on the spinning triangle based modifications of ring frame to reduce the staple yarn hairiness. Journal of Fiber Science and Technology, 6, 19–39.
  • [18] Liu, X., Su, X. (2014). Numerical simulation of three-dimensional flow field in compact spinning with Hollow Roller: Effect of roller surface structure. International Journal of Clothing Science and Technology, 26(2), 131–144.
  • [19] Liu, X., Liu, X. (2015). Numerical simulation of the three-dimensional flow field in four pneumatic compact spinning using the Finite Element Method. Textile Research Journal, 85(16), 1712–1719.
  • [20] Zhuan Yong, Z., Long Di, C., Zhi Hong, H. (2009). A numerical approach to simulate fiber motion trajectory in an airflow field in compact spinning with a perforated drum. Textile Research Journal, 80(5), 395–402.
  • [21] Raman, R., Dewang, Y., Raghuwanshi, J. (2018). A review on applications of computational fluid dynamics. International Journal of LNCT, 2(6).
  • [22] Wang, J., Wan, D. (2020). Application progress of computational fluid dynamic techniques for complex viscous flows in ship and ocean engineering. Journal of Marine Science and Application, 19(1), 1–16.
  • [23] Drikakis, D., Frank, M., Tabor, G. (2019). Multiscale computational fluid dynamics. Energies, 12(17), 3272.
  • [24] Akankwasa, N. T., Lin, H., Zhang, Y., Wang, J. (2018). Numerical simulation of three-dimensional airflow in a novel dual-feed rotor spinning box. Textile Research Journal, 88(3), 237–253.
  • [25] Guoli, C., et al. (2011). A simulation study of concentration basin in hydrodynamics with fluent software. Research Journal of Chemistry and Environment, 15(2), 504–509.
  • [26] Dou, H., Liu, S. (2011). Trajectories of fibers and analysis of yarn quality for compact spinning with pneumatic groove. The Journal of the Textile Institute, 102(8), 713–718.
  • [27] Zhang, X., Zou, Z., Cheng, L. (2010). Numerical study of the three-dimensional flow field in compact spinning with inspiratory groove. Textile Research Journal, 80(1), 84–92.
  • [28] ASTMD2256. (2015). Standard test method for tensile properties of yarns by the single-strand method, vol. 7.01. PA Author (West Conshohocken).
  • [29] ASTM D3822/D3822M-14. (2020). Standard test method for tensile properties of single textile fibers. PA Author (West Conshohocken, Conshohocken).
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1eb2ae4d-cc7d-442b-9020-835897e63653
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.