PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical investigation of temperature distribution in the furnace of a coal fired grate boiler in part load conditions

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Gas temperature distribution along the grate length in part load conditions is expected to be non-uniform and vary significantly from the nominal. The objective of this work was to simulate the combustion process inside the furnace of a WR-25 coal fired grate boiler at two part load conditions. The results obtained were then compared to on-site temperature profile measurements taken 0.8, 2 and 3.5 meters above the grate level. Numerical analysis was performed using a commercial CFD (computational fluid dynamics) code. Boundary conditions at the grate-freeboard interface were calculated with a black-box type model. Off-design air distribution along the grate was taken into account based on real unit inspection. Model predictions demonstrated a good overall qualitative match with measured temperature profiles, but a quantitative comparison shows a need for improvements in the modeling. It was also shown that more attention needs to be paid to the modeling of soot, as it has a major impact on predicted temperatures.
Rocznik
Strony
359--365
Opis fizyczny
Bibliogr. 26 poz., rys., tab., wykr.
Twórcy
  • Institute of Heat Engineering, Warsaw University of Technology, Nowowiejska 21/25, 00-665, Warsaw, Poland
autor
  • Institute of Heat Engineering, Warsaw University of Technology, Nowowiejska 21/25, 00-665, Warsaw, Poland
autor
  • Institute of Heat Engineering, Warsaw University of Technology, Nowowiejska 21/25, 00-665, Warsaw, Poland
Bibliografia
  • [1] P. Krawczyk, J. Lewandowski, Exploiting the potential of water boilers in poland in the light of EU industrial emissions directives (in Polish), Piece Przemysłowe & Kotły 7 (2013) 29–33.
  • [2] Directive 2010/75/EU of the European Parliament and of the Council of 24 November 2010 on industrial emissions (integrated pollution prevention and control), OJ EU, L 334 (17.12) (2010) 2010.
  • [3] E. Bulewicz, A. Dyjakon, T. Hardy, W. Kordylewski, S. Słupek, R. Miller, A. Wanik, Combustion and fuels (in Polish), Oficyna Wydawnicza Politechniki Wrocławskiej. Wrocław.
  • [4] C. Yin, L. A. Rosendahl, S. K. Kær, Grate-firing of biomass for heat and power production, Progress in Energy and combustion Science 34 (6) (2008) 725–754.
  • [5] P. Orłowski, W. Dobrzański, E. Szwarc, Steam boilers: Design and calculations (in Polish) (1979).
  • [6] W. Blasiak, W. Yang, W. Dong, Combustion performance improvement of grate fired furnaces using ecotube system, Journal of the Energy Institute 79 (2) (2006) 67–74.
  • [7] P. Krawczyk, K. Badyda, J. Szczygieł, S. Młynarz, Investigation of exhaust gas temperature distribution within a furnace of a stoker fired boiler as a function of its operating parameters, Archives of Thermodynamics 36 (3) (2015) 3–14.
  • [8] W. Dong, W. Blasiak, CFD modeling of ecotube system in coal and waste grate combustion, Energy conversion and management 42 (15-17) (2001) 1887–1896.
  • [9] Y. Yang, Y. Goh, R. Zakaria, V. Nasserzadeh, J. Swithenbank, Mathematical modelling of MSW incineration on a travelling bed, Waste management 22 (4) (2002) 369–380.
  • [10] H.-H. Frey, B. Peters, H. Hunsinger, J. Vehlow, Characterization of municipal solid waste combustion in a grate furnace, Waste Management 23 (8) (2003) 689–701.
  • [11] C. Ryu, D. Shin, S. Choi, Combined simulation of combustion and gas flow in a grate-type incinerator, Journal of the Air & Waste Management Association 52 (2) (2002) 189–197.
  • [12] C. Ryu, Y. Yang, V. Nasserzadeh, J. Swithenbank, Thermal reaction modeling of a large municipal solid waste incinerator, Combustion Science and Technology 176 (11) (2004) 1891–1907.
  • [13] C. Yin, L. Rosendahl, S. Clausen, S. L. Hvid, Characterizing and modeling of an 88 MW grate-fired boiler burning wheat straw: Experience and lessons, Energy 41 (1) (2012) 473–482.
  • [14] K. Goerner, T. Klasen, Modelling, simulation and validation of the solid biomass combustion in different plants, Progress in Computational Fluid Dynamics, an International Journal 6 (4-5) (2006) 225–234.
  • [15] T. Klason, X.-S. Bai, Combustion process in a biomass grate fired industry furnace: a CFD study, Progress in Computational Fluid Dynamics, an International Journal 6 (4-5) (2006) 278–286.
  • [16] S. Cordiner, A. Manni, V. Mulone, V. Rocco, Biomass furnace study via 3D numerical modeling, International Journal of Numerical Methods for Heat & Fluid Flow 26 (2) (2016) 515–533.
  • [17] T. Nussbaumer, M. Kiener, P. Horat, Fluid dynamic optimization of grate boilers with scaled model flow experiments, CFD modeling, and measurements in practice, Biomass and Bioenergy 76 (2015) 11–23.
  • [18] N. Modlinski, Computational modeling of a utility boiler tangentially fired furnace retrofitted with swirl burners, Fuel Processing Technology 91 (11) (2010) 1601–1608.
  • [19] A. M. Dos Santos, R. Collin, Study of a MSW incinerator: overall operation and on-site measurements over the grate, in: National Waste Processing Conference, Vol. 15, MECHANICAL ENGINEERING PUBLICATIONS LTD, 1992, pp. 133–133.
  • [20] Z. Liang, X. Ma, Mathematical modeling of MSW combustion and SNCR in a full-scale municipal incinerator and effects of grate speed and oxygen-enriched atmospheres on operating conditions, Waste management 30 (12) (2010) 2520–2529.
  • [21] T. H. Fletcher, J. Ma, J. R. Rigby, A. L. Brown, B. W. Webb, Soot in coal combustion systems, Progress in Energy and Combustion Science 23 (3) (1997) 283–301.
  • [22] N. Modliński, Numerical simulation of SNCR (selective non-catalytic reduction) process in coal fired grate boiler, Energy 92 (2015) 67–76.
  • [23] M. A. Serio, D. G. Hamblen, J. R. Markham, P. R. Solomon, Kinetics of volatile product evolution in coal pyrolysis: experiment and theory, Energy & Fuels 1 (2) (1987) 138–152.
  • [24] J. Arthur, Reactions between carbon and oxygen, Transactions of the Faraday Society 47 (1951) 164–178.
  • [25] B. Magnussen, On the structure of turbulence and a generalized eddy dissipation concept for chemical reaction in turbulent flow, in: 19th Aerospace Sciences Meeting, 1981, p. 42.
  • [26] C. K. Westbrook, F. L. Dryer, Simplified reaction mechanisms for the oxidation of hydrocarbon fuels in flames, Combustion science and technology 27 (1-2) (1981) 31–43.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1eb113f1-da79-405c-82ce-e0b7df335c13
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.