PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The influence of litho- and pedogenic processes on Luvisols formation of selected area of Vistula Glaciation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The objective of the study was to determine the effect of litho- and pedogenic processes on soils of the selected area of Vistula Glaciation, based on profile distribution of unweathered components such as titanium, zirconium and silica in relation to their morphology, mineralogy, micromorphology and physicochemical properties. The predominant type of soilin the study area are Luvisols. Analysis of texture allowed to classify the investigated soils to sandy silts with loamy material as their subsoil. In the bulk soil silica dominates and its content was in the range 71.4 to 88.6%. The content of TiO2 within the profiles is fairy similar, without clear patterns in the profile distribution. The total content of zirconium in the samples was in range of 95.13 to 212.15 mg x kg-1. In the profile distribution of zirconium higher content of Zr was observed in the upper horizons compared to the top layerin all of theanalysed profiles, indicating different origin of soil material. Statistical analysis showed positive correla- tion between the total content of zirconium and the content of fraction 0 0.05-0.002 mm (correlation coefficient value: 0.692384; significance level - p < 0.05) and negative correlation between zirconium and clay content (correlation coefficient: -0.668157; p < 0.05). The lithologic discontinu i ty within profiles of the investigated soils has been additionally has proved by X-ray analysis of the clay fraction. The micromorphological analysis confirmed the complex genesis of the studied soils. The results of the study clearly showed an overall inhomogeneity and stratification of the soils. Studied Luvisols did not form as weath- ering product of homogeneous bedrock. Changes in granulometric and chemlcal composition within soil profiles are the consequence of translocation of clay fraction during lessivage as well as lithologic discontinul ty of the solum.
Rocznik
Strony
685--694
Opis fizyczny
Bibliogr. 44 poz., rys., tab., wykr.
Twórcy
autor
  • University of Technology and Life Sciences, Faculty of Agriculture and Biotechnology, Department of Soil Science and Soil Protection, Bernardyńska 6, 85-029 Bydgoszcz, Poland
  • University of Technology and Life Sciences, Faculty of Agriculture and Biotechnology, Department of Soil Science and Soil Protection, Bernardyńska 6, 85-029 Bydgoszcz, Poland
autor
  • University of Technology and Life Sciences, Faculty of Agriculture and Biotechnology, Department of Soil Science and Soil Protection, Bernardyńska 6, 85-029 Bydgoszcz, Poland
Bibliografia
  • 1. Anderson, D.W., 1987. Pedogenesis in the grassland and adjacent forest of the Great Plains. Advances in Soil Science, 7: 53-93.
  • 2. Barnhisel, R.I., Bertsch, P.M., 1989. Chlorite and hydroxyinterlayered vermiculite and smectite. In: Minerals in Soil Environments (eds. J.B. Dixon and S.B. Weed). SSSA Book Ser., 1: 729-788.
  • 3. Birkeland, P.W., 1999. Soils and Geomorphology. 3rd. ed. Oxford University Press, New York.
  • 4. Breemen, N., van, Buurman, P., 1998. Soil Formai i on. Kluwer, Dordrecht. Brimhall, G.H., Lewis, C.J., Ford, C., Bratt, J., Taylor, G., Warin, O., 1991. Quantitative geochemical approach to pedogenesis: importance of parent material reduction, volumetric expansion and eolian influx. Geoderma, 51: 51-91.
  • 5. Brindley, G.W., 1980. Quantitative X-ray mineral analysis of clays. Mineralogical Society Monograph, 5: 411-438.
  • 6. Chapman, S.C., Horn, M.E., 1968. Parent material uniformity and origin of silty soils in northwest Arkansas based on zirconiu-titanium conients. Soil Science Society of America Proceedi ngs, 32: 265-271.
  • 7. Cremeens, R.L., Mokma, D.L., 1986. Argillic horizon expression and classification in the soils of two Michigan hydrosequences. Soil Science Society of America Journal, 50: 1002-1007.
  • 8. Crock, J.G., Severson, R.C., 1980. Four reference soil and samples for measuring element availability from western Energy Regions. Geological Survey Circular, 841.
  • 9. Czarnowska, K., 1989. Content of some metals in soils developed from silty formations (in Polish with English summary). Soil Science Annual, 40: 106-117.
  • 10. Dąbkowska-Naskręt, H., Jaworska, H., 1997. Lessive soils formed from silt depos i ts of Pojezierze Chełmińsko-Dobrzyńskie and Wysoczyzna Kaliska region (in Polish with English summary). Part I. Morphology and physico-chemical properies. Soil Science Annual, 48: 59-69.
  • 11. Dąbkowska-Naskręt, H., Jaworska, H., 2001. Titanium in Alfisols formed from glacial deposits of different ages in Poland. Quaternary International, 78: 61-67.
  • 12. Duchafour, Ph., 1956. Pedologie: applications forestieres et agricoles. Nancy, Ecole Eaux Forestiere.
  • 13. FitzPatrick, E.A., 1984. Soil Micromorphology. Chapman and Hall Press, London.
  • 14. Galon, R., 1972. Geomorfologia Polski. Niż Polski, tom 2 (in Polish). PWN, Warszawa.
  • 15. Helbig, H., 1999. Die spätglaziale und holozäne Überprägung der Grundmoränenplatten in Vorpommern. Greifswalde Geographische Arbeiten, 17: 1-110.
  • 16. IUSS Working Group WRB, 2006 update 2007. World reference base for soil resources 2006. World Soil Resources Reports No.103. FAO, Rome.
  • 17. Jackson, M.L., 1973. Soil Chemical Analysis - Advanced Course. Department of Soil Science, University of Wisconsin, Madison.
  • 18. Jaworska, H., Dąbkowska-Naskręt, H., 2006. Zirconium in alfisols of different granulometric composition within soil profiles. Polish Journal of Environmental Studies, 15: 312-315.
  • 19. Komisarek, J., 2000. Evolution of Luvisols and black earths properties and groundwater chemistry at undulated moraine Lake Poznan. Roczniki AR, Poznań, Rozprawy Naukowe, 307.
  • 20. Komisarek, J., Szałata, S., 2011. Skład chemiczny masy glebowej wybranych gleb płowych zaciekowych Wielkopolski (in Polish). Nauka Przyroda Technologie, 5/5: 1-16.
  • 21. Kondracki, J., 2002. Geografia Regionalna Polski (in Polish). PWN, Warszawa.
  • 22. Kopp, D., Kowalkowski, A., 1990. Cryogenic and pedogenic perstruction in Tertiary and Quaternary deposits, as exemplified in the outcrop of Sternebeck. Quaternary Studies in Poland, 9: 51-71.
  • 23. Kühn, P., 2001. Grundlegende Voraussetzungen bodengenetischer Vergleichsuntersuchungen: Theorie und Anwendung. Greifsi walde Geographische Arbeiten, 23: 133-153.
  • 24. Hanna Jaworska, Halina Dąbkowska-Naskręt and Mirosław Kobierski
  • 25. Kühn, P., 2003. Micromorphology and Late Glacial, Holocene Genesis of Luvisols in Mecklenburg-Vorpommern (NE-Germany). Catena, 54: 537-555.
  • 26. Kuzila, M.S., 1995. Identification of multiple loess units within modern soils of Clay County, Nebraska. Geoderma, 65: 45-57.
  • 27. Lindner, L., 1984. An out l ine of Pleistocene chronostratigraphy in Po land. Acta Geologica Polonica, 34: 27-50.
  • 28. Lindner, L., Marks, L., 1996. Stadials and interstadials of the Wisła Glaciation (Vistulian) in the Polish Lowland and the Tatra Mts. In: Genesis, Lithologyand Stratigraphy of Quaternary Deposits: 177-189. Wydawnictwo Naukowe UAM.
  • 29. Mapa Gleb Polski 1:300,000, 1961. Arkusz C3 (in Polish). IUNG Puławy, Wyd. Geol., Warszawa.
  • 30. Marion, G.M., Hendricks, D.M., Dult, G.R., Fuller, W.H., 1976. Aluminium and silica solubility in soils. Soil Science, 121: 76-85.
  • 31. Marks, L., 2002. Last Glacial Maximum in Poland. Quaternary Science Reviews, 21: 103-110.
  • 32. Muhs, D.R., Bettis, E.A., Been, J., Mc Geehin, J.P., 2001. Impact of climate and parent material on chemical weathering in loess-derived soils of the Mississippi River Valley. Soil Science Society of American Journal, 65: 1761-1777.
  • 33. Munsell Soil Color Chart, 1994. Munsell Color Company.
  • 34. Poli sh Norm PN-ISO 11277, 2005. Soil quality - determination of soil texture - with the areometer-sieve method. PKN, Wart szawa.
  • 35. Polish Soil Classification, 2011. Soil Science Annual, LXII/3.
  • 36. Quenard, L., Samouelian, A., Laroehe, B., Cornu, S., 2011. Lessivage as a major process of soil formation: a revisitation of existing data. Geoderma, 167/168: 135-147.
  • 37. Schaetzl, R.J., Mokoma, D.I., 1998. A numerical index of Podzol and Podzolic soil development. Physical Geography, 35: 183-191.
  • 38. Semmel, A., 2004. Periglacial past and geoecological present of soils in German Lower Mountain Ranges. Monitoring Środowiska Przyrodniczego, 5: 235-247.
  • 39. Skłodowski, P., Bielska, A., 2009. Properties and fertility of soils in Poland - a basis for the formation of agro-environmental relations (in Polish with English summary). Water-Environment-Rural Area, 9: 203-214.
  • 40. Soil Survey Staff, 2010. Keys to Soil Taxonomy. USDA, National Resource Conservation Service. 11 th ed. National Soil Survey Center, Lincoln, NE.
  • 41. Stiles, C.A., Mora, C.I., Driese, S.G., 2003. Pedogenic processes and domain boundaries in a Vertisol climosequence: evidence from titanium and zirconium distribution and morphology. Geoderma, 116: 279-299.
  • 42. Stoops, G., 2003. Guidelines for analysis and description of soil and regolith thin sections. Soil Science Society of America, Madison, Wis con sin.
  • 43. Wang, Z.P., Shi, L.L., Chen, G.S. Cheng, K.L., 2000. Multivariate spectrofluorimetry of ultra trace zirconium (IV) and hafnium(IV) assisted by several chemometrics methods. Talanta, 51: 315-326.
  • 44. Wysota, W., Molewski, P., Sokołowski, R.J., 2008. Vistula lobe dynamics during the last glaciation in the light of new research. Landform Analysis, 19: 264-266.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1ea45eab-b6ae-4e26-b250-f0e0ca482fbb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.