PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Entropy generation and squeezing flow past a Riga plate with Cattaneo-Christov heat flux

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this article, we investigate the convective heat transfer of the two-dimensional unsteady squeezing flow past a Riga plate. To examine the heat transfer, Cattaneo-Christov heat flux model is used. Influence of entropy generation on heat transfer has been investigated numerically. With the help of suitable similarity transformation, the governing partial differential equations (PDEs) are converted into ordinary differential equations (ODEs). The obtained system of non-linear ordinary differential equations subject to the convective boundary conditions is solved by the shooting method using the computational software MATLAB. To strengthen the reliability of the results obtained by the shooting method, the MATLAB built-in function bvp4c has been used. The graphs show the effect of different physical parameters for velocity, temperature, concentration and tables are presented to observe the behaviour of skin friction and sherwood number under the influence of certain physical parameters. It is observed that for increasing values of thermal relaxation parameter, the temperature profile increases and an opposite behaviour is shown for the concentration profile. Moreover, with an increase in the Brinkman number, the entropy generation increases.
Rocznik
Strony
291--300
Opis fizyczny
Bibliogr. 48 poz., rys., wykr., tab.
Twórcy
autor
  • Department of Mathematics, Capital University of Science and Techonology, Islamabad, Pakistan
autor
  • Department of Mathematics, Capital University of Science and Techonology, Islamabad, Pakistan
autor
  • Department of Mathematics, Capital University of Science and Techonology, Islamabad, Pakistan
Bibliografia
  • [1] M.J. Stefan, “Versuch Uber die scheinbare udhesion, Akad. wiss. weinmath”, Math-Nat Wiss Ki. 69, 713–721 (1874).
  • [2] J. Engmann, C. Servais, and A. S. Burbidge, “Squeeze flow theory and applications to rehometry: A review”, N. New. F. Mech. 132, 01–27 (2005).
  • [3] X. Chunhui, L. Yuan, X. Yong, and W. Hang, “Squeeze flow of interstitial Herschel-Bulkely fluid flow between two rigid spheres”, Particuology 8, 360‒364 (2010).
  • [4] A.R.A. Khaled, and K. Vafai, “Hydromagnetic squeezed flow and heat transfer over a sensor surface”, Int. J. Eng. Sci. 42, 509‒519 (2004).
  • [5] A.M. Siddiqui, S. Irrum, and A.R. Ansari, “Unsteady squeezing flow of a viscous MHD fluid between parallel plates”, Math. Model. Anal. 13, 565‒576 (2008).
  • [6] A. Dib, A. Haiahem, and B.B. Said, “Approximate analytical solution of squeezing unsteady nano-fluid flow”, Powder. Technol. 269, 193‒199 (2014).
  • [7] T. Hayat, A. Qayyum, and A. Alsaedi, “Three dimensional mixed convection squeezing flow”, Appl. Math. Mec. 36, 47-60 (2015).
  • [8] R.U. Haq, S. Nadeem, Z.H. Khan, and N.F. Noor, “MHD squeezed flow of water functionalized metallic nanoparticles over a sensor surface”, Phys. E 73, 45‒53 (2015).
  • [9] M. Atlas, R.U. Haq, and M. Mekkaoui, “Active and Zero flux of nanoparticles between a squeezing channel with thermal radiation effects”, J. Mol. Liq. 223, 289‒298 (2016).
  • [10] M. Sheikholeslami, and D.D. Ganji, “Effect of adding nanoparticle on squeezing flow and heat transfer improving using KKL method”, Int. J. Numer. Methods Fluid 27, 1535‒1553 (2017).
  • [11] M. Khan and M. Azam, “Unsteady heat and mass transfer mechanism in MHD Carreau nanofluid flow”, J. Mol. Liq. 225, 554‒562 (2017).
  • [12] A.S. Dogonchi and D.D. Ganji, “Analytic solution and heat transfer of two phase nanofluid flow between two parallel walls considering Jouel heating effects”, J. Mol. Liq. 318, 390‒400 (2017).
  • [13] A. Gailitis and O. Lielausis, “On a possibility to reduce the hydrodynamics resistance of a plate in an electrolyte”, Appl. Magnet. Rep. Phy. Inst. 12, 143‒146 (1961).
  • [14] A. Pantokrators and E. Magyari, “EMHD free convection boundary layer flow from a Riga plate”, J. Eng. Math. 64, 303- 315 (2009).
  • [15] A. Pantokrators, “The Blasius and Sakiadis flow along a Rigaplate”, Prog. Comput. Fluid. Dy. 11(5), 329‒333 (2011).
  • [16] A. Ahmad, S. Asghar and S. Afzal, “Flow of a nanofluid past a Riga plate”, J. Magn. Magn. Mater. 402, 44‒48 (2016).
  • [17] T. Hayat, T. Abbas, M. Ayub, M. Farooq, and A. Alsaedi, “Flow of nanofluid due to convectively heated Riga plate with variable thickness”, J. Mol. Liq. 222, 854‒862 (2016).
  • [18] R. Ahmad, M. Mustafa, and M. Turkyilmazoglu, “Buoyancy effects on nanofluid flow past a convectively heated Riga plate.”, Int. J Heat Mass Trans 111, 827‒835 (2017).
  • [19] M. Sheikholeslami and D.D. Ganji, “Numerical investigation of nanofluid melting heat transfer between two pipes”, Alex. Eng. J. (2017).
  • [20] N. Bozorgan and M. Shafahi, “Analysis of Gasketed plate heat exchanger performance using nanofluid”, J. Heat Mass Trans. Research (2017).
  • [21] E. Abu-Nada, “Simulation of heat transfer enhancement in nanofluids using dissipative particle dynamics”, Int. Commu. Heat Mass Trans. 85, 1‒11 (2017).
  • [22] M. Sheikholeslami, and M.M. Bhatti, “Active method for nanofluid heat transfer enhancement by means of EHD”, Int. J. Heat Mass Trans (2017).
  • [23] M. Bilal, S. Hussain, and M. Sagheer, “Boundary layer flow of magneto-micropolar nanofluid flow with Hall and ion-slip effects using variable thermal diffusivity”, Bull. Pol. Ac.: Tech. 65(3), 383‒390 (2017).
  • [24] A. Rauf, S.A. Shehzad, T. Hayat, M.A. Meraj, and A. Alsaedi, “MHD stagnation point flow of micro nanofluid towards a shrinking sheet with convective and zero mass flux conditions”, Bull. Pol. Ac.: Tech. 65(2), 155‒162 (2017).
  • [25] M. Turkyilmazoglu, “Equivalences and correspondences between the deforming body induced flow and heat in three dimension”, Phys. Fluid 28, 043‒102 (2016).
  • [26] J.B.J. Fourier, Theorie Analytique De La Chaleur, Chez Firmin Didot, Paris, 1822.
  • [27] C. Cattaneo, “Sulla conduzione del calore Atti semin”, Mat. Fis. Univ. Modena Reggio Emilia 5, 83‒101 (2009).
  • [28] C.I. Christov, “On frame indifferent formulation of the Maxwell-Cattaneo model f finite speed heat conduction”, Mech. Res. Commun. 36, 481‒486 (2009).
  • [29] M. Ciarletta and B. Straughan, “Unique and structural stability for the Cattaneo-Christov equations”, Mech. Res. Commun. 37, 445‒447 (2010).
  • [30] S. Han, L. Zheng, C. Li, and X. Zhang, “Coupled flow and heat transfer in viscoelastic fluid with Cattaneo-Christov heat flux model”, Appl. Math. Lett. 38, 87‒93 (2014).
  • [31] M. Mustafa, “Cattaneo-Christov heat flux model for rotating flow and heat transfer of upper-convective maxwell nanofluid”, AIP Adv. 5, 47‒109 (2015).
  • [32] S. Shah, S. Hussain, and S. Sagheer, “MHD effects and heat transfer for the UCM fluid along with Jouel heating and thermal radiation using Cattaneo-Christov heat flux model”, AIP Adv. 6 (2016).
  • [33] N. Muhammad, S. Nadeem, and T. Mustafa, “Squeezed flow of a nanofluid with Cattaneo- Christov heat and mass fluxes”, Res. Phys. 7 (2017).
  • [34] A. Bejan, “Entropy generation minimization: The new Thermodynamic of finite size devices and finite time process”, J. Appl. phys. 79 (1996).
  • [35] M.M. Rashidi, S. Abelman, and N. Freidoonimehr, “Entropy generation in steady MHD flow due to rotating porous disk in nanofluid”, Int. J. Heat Mass Transfer. 62, 515‒525 (2013).
  • [36] A.S. Butt and A. Ali, “Analysis of entropy generation effects in unsteady squeezing flow in a rotating channel with lower stretching permeable wall”, J. Taiwan Inst. Chem. Eng. 48, 8‒17 (2015).
  • [37] S. Hussain, K. Mehmood, and M. Sagheer, “MHD mixed convection and entropy generation of water-alumina nanofluid flow in a doubled lid driven cavity with discrete heating”, J. Magn. Magn. Mater 419, 140‒155 (2016).
  • [38] J. Qing, M.M. Bhatti, M.A. Abbas, M.M. Rashidi, and M.E.S. Ali, “Entropy generation on MHD Casson nanofluid flow over a porous stretching/shrinking surface”, Entropy 18, 123 (2016).
  • [39] J.H. He, “Homotopy perturbation technique”, Comput. Methods Appl. Mech. Eng. 178(3), 257‒262 (1999).
  • [40] O.A. Bég, M.M. Rashidiand, A.T. Bég, and M. Asadi, “Homotopy analysis of transient magneto-bio-fluid dynamics of micropolar squeeze film in a porous medium: a model for magneto-bio-rheological lubrication”, J. Mech. Medi. Bio. 12(3), 125‒151 (2012).
  • [41] M. Qayyum, H. Khan, and M.T. Rahim, “A novel approach to approximate unsteady squeezing flow through porous medium.”, J. Prime Res. Math. 12 (2016).
  • [42] A.S. Dogonchiand, M. Hatami, K.H. Hosseinzadeh, and G. Domairry, “Non-spherical particles sedimentation in an incompressible Newtonian medium by Padé approximation”, Powder Tech. 278, 248‒256 (2015).
  • [43] M. Turkyilmazoglu, “Determination of the correct range of physical parameters in the approximate analytical solutions of nonlinear equations using the Adomian decomposition method”, Mediter. J. Math. 13(6), 4019‒4037 (2016).
  • [44] T. Hayat, M. Khan, M. Imtiaz, and A. Alsaedi, “Squeezing flow past a Riga plate with chemical reaction and convective conditions”, J. Mol. Liq. 225, 569‒576 (2016).
  • [45] T. Hayat, K. Muhammad, Khursheed, M. Farooq, and A. Alsaedi, “Unsteady squeezing flow of carbon nanotubes with convective boundary conditions”, PloS one 11(5), 152‒923 (2016).
  • [46] T. Abbas, M. Ayub, M.M. Bhatti, M.M. Rashidi, and M.E.S. Ali, “Entropy generation on nananofluid flow through a horizontal Riga plate”, Entropy 18, 223 (2016).
  • [47] G.H.R. Kefayati, “Simulation of double diffusive convection and entropy generation of power-law fluids in an inclined porous cavity with Soret and Dufour effects”, Int. J. Heat Mass Transfer 94, 582‒624 (2016).
  • [48] T.Y. Na, Computational Methods in Engineering Boundary Value Problem, Academic Press, 71‒76, 1979.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1ea08323-742e-46c3-b15b-ed56bc073898
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.