PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Captivity of mean-field particle systems and the related exit problems

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A mean-field system is a weakly interacting system of N particles in Rd confined by an external potential. The aim of this work is to establish a simple result about the exit problem of mean-field systems from some domains when the number of particles goes to infinity. More precisely, we prove the existence of some subsets of RdN such that the probability of leaving these sets before any T > 0 is arbitrarily small by taking N large enough. On the one hand, we show that the number of steady states in the small-noise limit is arbitrarily large with a sufficiently large number of particles. On the other hand, using the long-time convergence of the hydrodynamical limit, we identify the steady states as N goes to infinity with the invariant probabilities of the McKean-Vlasov diffusion so that some steady states in the small-noise limit are not steady states in the large N limit.
Rocznik
Strony
143--159
Opis fizyczny
Bibliogr. 27 poz.
Twórcy
autor
  • Institut Camille Jordan CNRS UMR 5208, Université Jean Monnet, Télécom Saint-Étienne, 25, rue du Docteur Rémy Annino, 42000 Saint-Étienne, France
Bibliografia
  • [1] S. Benachour, B. Roynette, D. Talay, and P. Vallois, Nonlinear self-stabilizing processes. I. Existence, invariant probability, propagation of chaos, Stochastic Process. Appl. 75 (2) (1998), pp. 173-201.
  • [2] D. Benedetto, E. Caglioti, J. A. Carrillo, and M. Pulvirenti, A non-Maxwellian steady distribution for one-dimensional granular media, J. Statist. Phys. 91 (5-6) (1998), pp. 979-990.
  • [3] N. Berglund, B. Fernandez, and B. Gentz, Metastability in interacting nonlinear stochastic differential equations. II: Large-N behaviour, Nonlinearity 20 (11) (2007), pp. 2583-2614.
  • [4] F. Bolley, A. Guillin, and C. Villani, Quantitative concentration inequalities for empirical measures on non-compact spaces, Probab. Theory Related Fields 137 (3-4) (2007), pp. 541-593.
  • [5] J. A. Carrillo, R. J. McCann, and C. Villani, Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates, Rev. Mat. Iberoamericana 19 (3) (2003), pp. 971-1018.
  • [6] P. Cattiaux, A. Guillin, and F. Malrieu, Probabilistic approach for granular media equations in the non-uniformly convex case, Probab. Theory Related Fields 140 (1-2) (2008), pp. 19-40.
  • [7] F. Collet, P. Dai Pra, and E. Sartori, A simple mean field model for social interactions: dynamics, fluctuations, criticality, J. Statist. Phys. 139 (5) (2010), pp. 820-858.
  • [8] D. Crisan and J. Xiong, Approximate McKean-Vlasov representations for a class of SPDEs, Stochastics 82 (1-3) (2010), pp. 53-68.
  • [9] D. A. Dawson and J. Gärtner, Large deviations from the McKean-Vlasov limit for weakly interacting diffusions, Stochastics 20 (4) (1987), pp. 247-308.
  • [10] A. Dembo and O. Zeitouni, Large Deviations Techniques and Applications, Stoch. Model. Appl. Probab., Vol. 38, Springer, Berlin 2010. Corrected reprint of the second (1998) edition.
  • [11] M. I. Freidlin and A. D. Wentzell, Random Perturbations of Dynamical Systems, second edition, Grundlehren Math. Wiss., Vol. 260, Springer, New York 1998. Translated from the 1979 Russian original by J. Szücs.
  • [12] S. Herrmann, P. Imkeller, and D. Peithmann, Large deviations and a Kramers’ type law for self-stabilizing diffusions, Ann. Appl. Probab. 18 (4) (2008), pp. 1379-1423.
  • [13] S. Herrmann and J. Tugaut, Non-uniqueness of stationary measures for self-stabilizing processes, Stochastic Process. Appl. 120 (7) (2010), pp. 1215-1246.
  • [14] S. Herrmann and J. Tugaut, Stationary measures for self-stabilizing processes: asymptotic analysis in the small noise limit, Electron. J. Probab. 15 (2010), pp. 2087-2116.
  • [15] B. Jourdain, S. Méléard, and W. A. Woyczynski, Probabilistic approximation and inviscid limits for one-dimensional fractional conservation laws, Bernoulli 11 (2005), pp. 689-714.
  • [16] B. Jourdain, S. Méléard, and W. A. Woyczynski, A probabilistic approach for nonlinear equations involving the fractional Laplacian and singular operator, Potential Anal. 23 (2005), pp. 55-81.
  • [17] B. Jourdain, S. Méléard, and W. A. Woyczynski, Nonlinear stochastic differential equations driven by Lévy processes and related partial differential equations, ALEA Lat. Am. J. Probab. Math. Stat. 4 (2008), pp. 31-46.
  • [18] F. Malrieu, Logarithmic Sobolev inequalities for some nonlinear PDE’s, Stochastic Process. Appl. 95 (1) (2001), pp. 109-132.
  • [19] F. Malrieu, Convergence to equilibrium for granular media equations and their Euler schemes, Ann. Appl. Probab. 13 (2) (2003), pp. 540-560.
  • [20] H. P. McKean Jr., Propagation of chaos for a class of non-linear parabolic equations, in: Stochastic Differential Equations (Lecture Series in Differential Equations, Session 7, Catholic Univ., 1967), Air Force Office Sci. Res., Arlington, VA, 1967, pp. 41-57.
  • [21] S. Méléard, Asymptotic behaviour of some interacting particle systems; McKean-Vlasov and Boltzmann models, in: Probabilistic Models for Nonlinear Partial Differential Equations (Montecatini Terme, 1995), Lecture Notes in Math., Vol. 1627, Springer, Berlin 1996, pp. 42-95.
  • [22] A.-S. Sznitman, Topics in propagation of chaos, in: École d’Été de Probabilités de Saint-Flour XIX-1989, Lecture Notes in Math., Vol. 1464, Springer, Berlin 1991, pp. 165-251.
  • [23] J. Tugaut, Self-stabilizing processes in multi-wells landscape in Rd – Invariant probabilities, J. Theoret. Probab. (2012), pp. 1-23. DOI: 10.1007/s10959-012-0435-2.
  • [24] J. Tugaut, Exit problem of McKean-Vlasov diffusions in convex landscapes, Electron. J. Probab. 17 (76) (2012), pp. 1-26.
  • [25] J. Tugaut, Convergence to the equilibria for self-stabilizing processes in double-well landscape, Ann. Probab. 41 (3) (2013), pp. 1427-1460.
  • [26] J. Tugaut, Phase transitions of McKean-Vlasov processes in double-wells landscape, Stochastics (2013), pp. 1-28. DOI: 10.1080/17442508.2013.775287.
  • [27] J. Tugaut, Self-stabilizing processes in multi-wells landscape in Rd – Convergence, Stochastic Process. Appl. 123 (5) (2013), pp. 1780-1801.
Uwagi
This article is dedicated to Marina Sertić.
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1e9c6f49-ee4e-40f3-82d2-064fcf1fb2e5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.