PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A Numerical Study of The Heat Transfer Intensification Using High Amplitude Acoustic Waves

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The current practice in the efforts aiming to improve cooling conditions is to place emphasis on the application of non-stationary flow effects, such as the unsteady jet heat transfer or the heat transfer intensification by means of a high-amplitude oscillatory motion. The research presented in this paper follows this direction. A new concept is put forward to intensify the heat transfer in the cooling channels with the use of an acoustic wave generator. The acoustic wave is generated by a properly shaped fixed cavity or group of cavities. The sound generated by the cavity is a phenomenon analysed in various publications focused on the methods of its reduction. The phenomenon is related to the feedback mechanism between the vortices flowing from the leading edge and the acoustic waves generated within the cavity. The acoustic waves are generated by the interaction between the vortices and the cavity walls. Strong instabilities can be observed within a certain range of the free flow velocities. The investigations presented in this paper are oriented towards the use of the phenomenon for the purposes of the heat transfer process intensification. The first part of the work presents the numerical model used in the analysis, as well as its validation and comparison with empirical relations. The numerical model is constructed using the commercial CFD Ansys CFX-16.0 commercial program. The next part includes determining of the relationship between the amplitude of the acoustic oscillations and the cooling conditions within the cavity. The calculations are performed for various flow conditions.
Rocznik
Strony
31--47
Opis fizyczny
Bibliogr. 24 poz., rys., tab., wykr.
Twórcy
autor
  • Institute of Power Engineering and Turbomachinery, Silesian University of Technology, Konarskiego 18, 44-100 Gliwice, Poland
  • Institute of Power Engineering and Turbomachinery, Silesian University of Technology, Konarskiego 18, 44-100 Gliwice, Poland
Bibliografia
  • 1. Ashcroft G. B., Takeda K., Zhang X. (2000), Computations of self-induced oscillatory flow in an automobile door cavity, NASA/CP-2000-209790, pp. 355-361.
  • 2. Chaudhari M., Puranik B., Agrawal A. (2010), Heat transfer characteristics of synthetic jet impingement cooling, International Journal of Heat Mass Transfer, 53, 5-6, 1057-1069.
  • 3. De Jong A. T., Bijl H. (2010), Investigation of higher spanwise Helmholtz resonance modes in slender covered cavities, The Journal of the Acoustical Society of America, 128, 4, 1668-1678.
  • 4. Durgin W., Graf H. (1992), Flow-excited acoustic resonance in a deep cavity: an analytical model, AMDVol. 151/PVP-Vol. 247, Symposium on Flow-Induced Vibration and Noise, Vol. 7, pp. 81-91.
  • 5. Elder S., Farabee T., DeMetz F. (1982), Mechanisms of flow-excited cavity tones at low Mach number, The Journal of the Acoustical Society of America, 72, 2, 532-549.
  • 6. Florio L., Harnoy A. (2011), Natural convection enhancement by a discrete vibrating plate and a cross-flow opening: a numerical investigation, Heat Mass Transfer, 47, 6, 655-677.
  • 7. Gondrexon N., Rousselt Y., Legay M., Boldo P., Le Person S., Bontemps A. (2010), Intensification of heat transfer process: improvement of shell-and-tube heat exchanger performances by means of ultrasound, Chemical Engineering and Processing, 49, 9, 936-942.
  • 8. Hassan M., Labraga L., Keirsbulck L. (2007), Aeroacoustic oscillations inside large deep cavities, 16th Australasian Fluid Mechanics Conference, Crown Plaza, Gold Coast, Australia, December 2-7, 2007, pp. 421-428.
  • 9. Henderson B. (2000), Automobile noise involving feedback-sound generation by low speed cavity flows, NASA/CP-2000-209790, pp. 95-100.
  • 10. Jones M., Watmuff J., Henbest S. (2010), Aeroacoustic measurements of a deep cavity in a low-speed flow, 17th Australasian Fluid Mechanics Conference, Auckland, New Zealand, December 5-9, 2007, pp. 828-832.
  • 11. Léal L. et al. (2013), An overview of heat transfer enhancement methods and new perspectives: focus on active methods using electroactive materials, International Journal of Heat and Mass Transfer, 61, 505-524.
  • 12. Legay M., Gondrexon N., Person S. L., Boldo P., Bontemps A. (2011), Enhancement of heat transfer by ultrasound: review and recent advances, International Journal of Chemical Engineering, 2011, article ID 670108.
  • 13. Loh C. (2004), Computation of low speed cavity noise, 42nd Aerospace Sciences Meeting and Exhibit, NASA.CR-2004-212892.
  • 14. Loh Ching Y. (2004), Computation of low speed cavity noise, NASA/CR-2004-212892.
  • 15. Menter F. (1993), Zonal two-equation k-ω turbulence model for aerodynamic flows, NASA-TM-111629, NAS 1.15:111629, AIAA Paper 93-2906, pp. 1993-2906.
  • 16. Menter F. (1994), Two-equation eddy-viscosity turbulence models for engineering applications, AIAAJournal, 32, 8, 269-289.
  • 17. Rossiter J. E. (1964), Wind tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds, Royal Aircraft Establishment, Technical Report 64037.
  • 18. Rulik S., Wróblewski W., Nowak G., Szwedowicz J. (2015), Heat transfer intensification using acoustic waves in a cavity, Energy, 87, 21-30.
  • 19. Shahi M., Kok. J., Pozarlik A. (2014), Study of unsteady heat transfer as a key parameter to characterize limit cycle of high amplitude pressure oscillations, Proceedings of ASME Turbo Expo 2014, Turbine Technical Conference and Exposition, June 16-20, Düsseldorf, Germany, Paper No. GT2014-26311.
  • 20. Singh A., Nikam K. (2009), Parametric study of wind noise generation from an overhang cavity using morphing technique, http://www.altairatc.com/india/previous-events/2009/HTC09/FEM_05_Parametric_Study_of_Overhang_Cavity_Acoustics_CRL.pdf.
  • 21. Soderman P. (1990), Flow-induced resonance of screen-covered cavities, NASA Technical Paper 3052.
  • 22. Ünalmis Ö., H. Clemens N. T., Dolling D. S. (2004), Cavity Oscillation Mechanisms in High–Speed Flows, AIAA Journal, 42, 10, 2035-2041.
  • 23. Wang C., Wang L., Sundén B. (2015), Heat transfer and pressure drop in a smooth and ribbed turn region of a two-pass channel, Applied Thermal Engineering, 85, 225-233.
  • 24. Wittich D., Cain A., Jumper E. (2011), Strong flow-acoustic resonances of rectangular cavities, International Journal of Aeroacoustics, 10, 2-3, 277-294.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1e987bc0-6a25-4c95-8871-35d5755373ea
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.