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Abstract
The paper presents an approach to the impact of process parameters in innovative RTH (Rapid Tube Hydroforming) technol-
ogy for shaping closed metal profiles in flexible and deformable dies. In order to implement the assumed deformation of the 
deformed profile, the RTH technology requires the monitoring and control of numerous technological parameters, including 
geometric, material, and technological variables. The paper proposes a two-stage research procedure considering hard mod-
elling (constitutive) and soft modelling (data-driven). Due to the complexity of the technological process, it was required to 
develop a numerical finite element method FEM model focused on obtaining the adequate profile deformation measured by 
the ellipsoidality of the cylindrical profile. Based on the results of the numerical experiments, a preliminary soft mathematical 
model using ANN was developed. Analysing the soft model results, several statistical hypotheses were made and verified to 
investigate the significance of selected process parameters. Thanks to this, it was possible to select the most important process 
parameters, i.e., the properties of moulding sands used for RTH dies: the angle of internal friction and cohesion.
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1. Introduction

The constantly growing requirements and needs to indi-
vidualise products means that all technologies of rapid 
prototyping and short series production are dynamical-
ly developing. Due to the high costs of die preparation 
and the time-consuming nature of production start-up, 
it has not been possible to perform unit or prototype 
production in the hydroforming technology so far 
(Sadłowska, 2008). The development of the innovative 
RTH method, described by Kochański & Sadłowska 
(2020a, 2020b) and Sadłowska et al. (2020), included 
hydroforming in the group of technologies allowing 
manufacturing even in short series. At the same time, 

the new technology is perfect for manufacturing prod-
ucts from all materials, including AHSS steels that are 
hard to deform. 

The RTH method (from Rapid Tube Hydroform-
ing) consists of shaping a thin-walled closed profile, 
placed in a die subject to deformation along with the 
deformation of the profile. This method takes its name 
(rapid) from the possibility of using it in fields of hy-
droforming technology unattainable thus far, i.e., for 
rapid prototyping operations. Classic hydroforming of 
metal profiles or tubes, widely used in the automotive 
industry, mainly consists of expanding the profile in 
a rigid die in order to reflect the shape of the profile 
after the operation. This approach requires a costly and 
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labour-intensive process of designing and producing 
the die, which means that hydroforming is still main-
ly used by the richest companies and is primarily used 
for large-scale and mass production. The RTH method 
completely changes this approach and is based on the 
deformation of the profile in the die deforming in a con-
trolled manner along with the profile. The RTH die has 
such properties since it is made of readily available 
and cheap materials, similar in properties to moulding 
sands, it is easy to manufacture and, moreover, it can 
be recycled. For these features to be met, both the die 
and the shaped profile must have appropriate material 
properties, and the process parameters should be select-
ed very carefully. This is due to the synergistic effect of 
the die and the profile, which interact with each other 
throughout the entire process, changing their properties 
at the same time. As for the deformation of metal pro-
files, it is related to the strengthening of the material, 
while the RTH die material behaves in a different way 
than metal. For example, it can undergo local com-
paction, and in some cases it can also be moved with-
out destructive deformation (Sadłowska et al., 2021). 
This behaviour is characteristic of grain materials, the 
behaviour of which is described by the mechanics of 
granular media.

Therefore, the RTH process, also called the 
forming method in susceptible dies, must be de-
scribed with numerous variables that can be con-
veniently systematised into three groups of process 
parameters (Fig. 1):

 – geometric parameters,
 – materials parameters,
 – technology parameters.

The group of geometric variables includes the de-
scription of the geometry of two areas: a shaped pro-

file and a die. For simple initial shapes of a tube-type 
profile, the geometry of the profile can be described by 
three parameters: diameter, length, and wall thickness. 
The description of the die geometry is more complex 
because the original (initial) contour of the cavity is re-
lated to the properties of the die material, which results 
from the assumptions of the method itself, (Kochański 
& Sadłowska, 2020a). The group of material variables 
collects parameters related to the properties of the pro-
file material, the material used to make the die and the 
values describing the boundary conditions between the 
profile and the die or the die and the box, e.g., friction 
coefficients. The last group of technological variables 
includes the largest number of parameters relating to 
the behaviour of the liquid that forms the profile or 
the state of the machine during the process. Due to the 
high level of technological advancement of the meth-
od, all of the parameters should be monitored.

Moreover, it should be noted that, due to the 
innovative approach of the method and the limited 
scope of the research carried out so far, there is no 
full expert knowledge explaining the significance 
of the influence of individual variables on the final 
shape and properties of the product. Therefore, the 
synergistic influence of many factors in the process 
is unknown due to the simultaneous interaction of the 
profile and the die. Due to the low level of develop-
ment of RTH technology, performing enough exper-
iments to determine the significance of the analysed 
process parameters is costly and time-consuming, and 
in many cases, simply unprofitable. Hence, the RTH 
method was originally developed with the aid of ad-
vanced modelling tools, both hard (constitutive) and 
soft (data-driven). This article presents one of the pos-
sible approaches for extending the knowledge of the 
RTH method.

Fig. 1. RTH process variables
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2. Methods

In light of the above, a two-stage research approach 
was proposed at this stage of the examination of a new 
RTH technology which consisted of:

 – The development of a hard mathematical model (con-
stitutive) of the analysed process and performance of 
bench experiments to verify the built model;

 – The development of a soft mathematical model 
(data driven) using the database obtained in nu-
merical modelling and analysing the obtained 
mathematical model in terms of the significance 
of process parameters.

2.1.  Hard modelling  
(constitutive)

The developed two-dimensional finite element method 
FEM model described by Sadłowska et al. (2020) is based 
on a selected number of process parameters and includes 
the profile geometry (diameter and wall thickness), die 
geometry (dimensions of the cavity and box dimensions), 
properties of the mass used to make the die (internal fric-
tion angle, cohesion coefficient, Young’s modulus, Pois-
son’s ratio), profile material properties (Young’s modulus, 
Poisson’s ratio, Yield stress, stress-strain curve) and fric-
tion coefficients for pairs: profile – die, die – box (Fig. 1). 

Fig. 2. Geometry of deformed profile

The established numerical model was verified in 
the testing-bench experiments described by Kochański 
& Sadłowska (2020b) and Sadłowska et al. (2020). A pro-
file with a circular cross-section was shaped in the sus-
ceptible die during experiments to obtain an ellipsoidal 
cross-section. The research goal was to obtain maximum 
ellipsoidality defined as the proportion of the ellipse main 
diameters d1 and d2 with a combination of minimal devi-
ation of the wall thickness t1 and t2 in the directions deter-
mined by the main diameters, as shown in Figure 2.

A series of numerical experiments were performed 
by means of the verified constitutive numerical FEM 
model using a wide range of process parameters varia-
bility. The following variables were used in numerical 
modelling: internal friction angle, cohesion coefficient, 
mass Young’s modulus, friction coefficient profile – 
mass, profile material property index (considering me-
chanical material properties), and wall thickness. The 
process parameters and the range of their variability of 
all parameters are presented in Table 1.

Table 1. The range of variability of parameters  
used in numerical modelling

Parameter Range Units
Internal friction angle φ 10÷50 °
Cohesion coefficient c 0.1÷1.5 MPa
Mould (die) material Young’s modulus E 100÷1000 MPa
Profile – die material friction coefficient µ 0.01÷0.1 –
Profile material factor ψ 0.56÷1.0 –
Wall thickness g 1.0÷3.0 mm

The variability distributions of individual param-
eters are shown in Figure 3. The distribution of the co-
hesion coefficient variation as a function of the internal 
friction angle shown in Figure 3a shows an increased 
number of experiments in the range of the friction angle 
of 35° and a cohesion coefficient below 1. 

Fig. 3. The variability distributions of individual parameters 
used in FEM modelling: a) cohesion coefficient vs. internal 

friction angle; b) wall thickness vs. profile material factor
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Earlier work by Sadłowska et al. (2020) showed that 
this range of variability is easy to obtain in the die material 
and that within this range of variation, the applied mass 
changes the nature of its behaviour under a profile shaping 
load. The distribution of the material factor profile ψ in 
relation to the profile thickness (see Fig. 3b) adopted in the 
numerical experiments results from the fact that the nu-
merical studies included profiles made of two steel grades, 
having different behaviour under load. It was assumed 
that the material factor profile takes the values 0.56 (for 
steel Re = 200 MPa and the stress-strain curve parameters 
C = 650 MPa and n = 0.25) or 1 (for Re = 600 MPa, C = 900, 
n = 0.1). The profiles shaped in the numerical experi-
ments had three wall thicknesses: 1 mm, 2 mm or 3 mm. 

2.2. Soft modelling  
(data-driven)

Soft mathematical modelling was used to develop 
a predictive model of the variable ellipsoidality which 
was used in the output layer. The variable ellipsoidality 
was defined as the proportion of the main diameters of 
the shaped profile (see Figure 2).

The set of data obtained from numerical modelling 
was normalised according to the methodology of data 
preparation presented by Grzegorzewski & Kochanski 
(2019). This was carried out to avoid the influence of the 
size of the input variables differed by orders of magnitude.

Afterwards, a soft mathematical model using artifi-
cial neural networks was developed for the data from the 
data set. The neural network used was a three-layer per-
ceptron with one hidden layer. The error back propagation 
algorithm was used for training. The number of neurons in 
the input layer was 7, because in addition to the previous-
ly mentioned parameters (shown in Table 1), the pressure 
coefficient of the working liquid was considered. Due to 
the size of the set of hard numerical modelling results it 
was decided to use a network with a small number of neu-

rons in the hidden layer in soft modelling. This gives the 
network a small number of weights to learn. According to 
suggestion of Pyramid Rule (where a number of hidden 
neurons equals the square root of the number of input and 
output neurons product), see Masters (1993) and Rach-
matullah et al. (2022), the hidden layer consisted of three 
neurons. The small number of neurons in the hidden layer 
means that the neural network has a negligible ability to 
“remember” all cases in the database. If the observations 
collected in the database are diverse, then a small neural 
network has no ability to overfitting. This was important 
because the aim of the research was to obtain a network 
with the ability of significant generalisation. The aim of 
the research was to obtain a tool allowing to determine 
the qualitative impact of individual parameters on the in-
put variable. One neuron corresponding to the Ellipsoi-
dal value was used in the output layer. A logistic function 
was used as the activation function in the neurons of the 
hidden layer. Linear functions were used in the input and 
output layers. The use of seven neurons in the input layer, 
three in the hidden layer and one in the output layer result-
ed in 24 weights to be determined. In combination with 
the number of 150 observations collected in the database, 
it guarantees an appropriate proportion, which is usually 
defined as not less than 4, (Masters, 1993). The Statis-
tica 13.3 package was used to build the neural network 
model. For the defined connection topology (number of 
neurons in layers: 7 – 3 – 1), 300 networks were made. 
The typical division of the database into sets was used: 
training – 70%, testing – 15% and validating – 15%. Each 
training was performed on a new, random division of the 
set. From all nets, the best five were selected. As the final 
prediction result, average values calculated from five se-
lected networks were used.

Figure 4 shows the values of ellipsoidality deter-
mined from FEM modelling and ellipsoidality predic-
tions obtained from the soft ANN model. For predic-
tions made using ANN, the mean square error MSE (for 
normalised quantities) was 0.005.

Fig. 4. Comparison of predicted ellipsoidality values for cases calculated by FEM (in order of decreasing values)
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As shown in Figure 5a, a high agreement of the soft 
model with the results obtained from FEM modelling was 
obtained. The coefficient of determination R2 shown in the 
graph was 0.92. A chart of the distribution of predicted 
values as a function of predicting errors is shown in Fig-

ure 5b. A group of predictions with an error of less than 
10% makes up more than 60% of the set. Another 21% of 
observations were in the group of predictions with an error 
of less than 20%. Thirteen observations, which constitute 
8.9% of the set, have a predicting error greater than 30%.

 

 

Fig. 5. Distribution of predicted values for ANN soft modelling as a function of values determined in FEM hard modelling (a) 
and distribution of predicted values as a function of prediction error (b)

3. Results of  
artificial neural networks modelling

The constructed neural network was used to generate 
the ellipsoidality quantity for any combination of input 
signals. For this purpose, a synthetic query set was de-
veloped. In the set, all input signals (see Table 1) took 
values at six normalised levels: 0.0; 0.2; 0.4; 0.6; 0.8; 1.0. 

The developed prediction results for the combination of 
input signals allowed for the generation of graphs show-
ing the impact of individual parameters in the set pro-
cess conditions. Figure 6 shows the effect of the internal 
friction angle and the cohesion coefficient with constant 
properties: the mass Young’s modulus, friction coeffi-
cient, profile material property coefficient ψ and profile 
wall thickness (E = 0.0; µ = 0.0; ψ = 0.0; g = 0.2).

Fig. 6. Ellipsoidality (in normalised values) vs. angle of internal friction  
for the selected set of process parameters: E = 0.0; µ = 0.0; ψ = 0.0; g = 0.2
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As a result of changing one process parameter, 
e.g., Young’s modulus of mass, we obtain analogous 
graphs (shown in Figure 7) with higher values of el-
lipsoidality. It can be observed the normalised ellip-
soidality values exceed 1.0 which may indicate the 
potential of the technology to obtain greater deforma-
tions.

Changing the profile wall thickness from 0.2 (Fig. 7) 
to 0.8 mm (Fig. 8) not only shows that significantly 
higher ellipsoidality can be obtained but also a sub-

stantial transformation of profile behaviour can be 
observed. 

The analysis of the wall thickness change showed that 
the increase of ellipsoidality with the increase of Young’s 
modulus of mass is not a rule, which was observed in Fig-
ure 7 and Figure 8. The ANN prediction of ellipsoidality is 
shown in Figure 9. The summary shows that for tubes with 
a greater wall thickness (g = 0.8 and g = 1.0 for normalised 
values), flexible masses with low Young’s modulus are 
better for achieving high ellipsoidality.

Fig. 8. Ellipsoidality (in normalised values) vs. angle of internal friction  
for the selected set of process parameters: E = 1.0; µ = 0.0; ψ = 0.0; g = 0.8

Fig. 7. Ellipsoidality (in normalised values) vs. angle of internal friction  
for the selected set of process parameters: E = 1.0; µ = 0.0; ψ = 0.0; g = 0.2
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Fig. 9. Ellipsoidality (in normalised values) vs. angle of internal friction for the selected set of process parameters:  
a) c = 0.0; E = 0.0; µ = 0.0; ψ = 0.0; b) c = 0.0; E = 1.0; µ = 0.0; ψ = 0.0

In view of the above, it was considered appropri-
ate to determine the significance of the impact of indi-
vidual process parameters. The developed RTH method 
requires the selection of numerous mass properties to 
assess an ability to obtain maximum ellipsoidality for 
a profile with specific parameters (profile material, wall 
thickness, etc.). Therefore, some statistics were devel-
oped for cohesion and the angle of internal friction for 
all cases (all possible combinations) of other parame-
ters to confirm or reject a hypothesis about the signifi-
cance of the influence of these mass parameters.

The cohesion coefficient and the internal friction 
angle have been analysed to investigate their influ-

ence on ellipsoidality as the main mass parameters. 
Therefore, the ranges of both parameters are divided 
into six sections (according to normalised values) and 
the box charts for ellipsoidality have been arranged, 
see Figure 10. For both parameters, box charts show 
the ellipsoidality increase for each subsequent section 
with this trend being even more obvious for cohesion. 
Median values for individual sections of ellipsoidal-
ity vs. cohesion (Fig. 10a), vary from 0.39 to 0.77, 
while for internal friction angle from 0.41 to 0.72. 
According to the box charts, it can be hypothesized 
that both cohesion and internal friction angle affect 
ellipsoidality. 
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Fig. 10. Box charts for ellipsoidality data for: a) cohesion; b) internal friction angle

To confirm these statistically, and to establish that 
both parameters are correlated with ellipsoidality, two 
types of statistical tests were performed. The first test 
was the Kruskal–Wallis one-way analysis of variance 
by ranks test which is a non-parametric method used 
for testing whether samples originate from the same 
distribution (Kruskal & Wallis, 1952). The method 
is used to determine whether a statistically signifi-
cant difference between the medians of three or more 
independent groups exists or not. In these consider-
ations, the aim was to assess whether any samples 
(corresponding to each of six levels of the parameter) 
stochastically dominate one other, and thus whether it 
affects the ellipsoidality. The calculated value of the 
statistic for cohesion was 15,077, and for the angle 
of internal friction was 8063.9. Such large statistical 
values could be associated with various data taken for 
analysis (over 300,000). Regardless, for both param-
eters, the p-value was less than 2.2e-16, which indi-
cates that there are statistically significant differences 
between the considered ranges.

In the next step of statistical analysis on ellip-
soidality the Jonckheere–Terpstra test was carried out 
for an ordered alternative hypothesis within an inde-
pendent samples design (Jonckheere, 1954; Terpstra, 
1952). It is similar to the Kruskal–Wallis test in the 
null hypothesis claiming that several independent 
samples come from the same population (the medi-
ans are identical). The Jonckheere–Terpstra test has 
more statistical power than the Kruskal–Wallis test 
when there is an a priori ordering of the populations 
from which the samples are drawn, which fits perfect-
ly into the analysis where ellipsoidality was divided 

into six ordered intervals for both cohesion and an-
gle of friction. As noted above, some tendency of co-
hesion and angle of friction on ellipsoidality can be 
observed in the box charts (Fig. 10), but conducting 
the Jonckheere–Terpstra test and obtaining for both 
cases a p-value less than 2.3e-16 confirms that there 
is a statistically significant order between groups, i.e. 
depending on the increase in the value of cohesion 
and the angle of friction, ellipsoidality has an increas-
ing trend.

4. Summary and discussion 

The essence of shaping profiles by hydroforming is to 
obtain a product with a given shape, one which is sig-
nificantly different from the initial one. An addition-
al condition is that shaping the new cross-sectional 
geometry does not lead to the thinning of the profile 
wall. In the case of the newly developing RTH meth-
od, obtaining a state of large changes in shape with 
a low wall thinning would require a huge number of 
bench experiments. The approach shown in the paper 
allows for a significant acceleration of work and the 
indication of attractive, prospective research direc-
tions. The use of a soft mathematical model (ANN) 
based on the results of constitutive modelling (FEM) 
allowed for the analysis of the influence of selected 
process parameters on the product property, i.e., el-
lipsoidality.

The Kruskal–Wallis statistical tests carried out on 
the data from the soft model showed that there is a sig-
nificance of the parameter under study (ellipsoidality) 
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on both analysed parameters, i.e., mass cohesion and 
internal friction. The performed Jonckheere–Terpstra 
tests showed that the change in ellipsoidality was in 
a statistically significant way in terms of these two pa-
rameters. With the increase of the cohesion coefficient 
and the internal friction angle, the ellipsoidal index in-
creases. 

The values of ellipsoidality obtained because of 
ANN modelling (shown in) indicate the possibility of 
obtaining much greater ellipsoidality of the profile than 
obtained to date in bench tests. 

5. Conclusions

The number of factors revealed in the Introduction indi-
cates that the new technological process is very compli-
cated and also difficult in terms of the number of factors 
that should be controlled during its implementation. As 
a result of the expert assessment, a limited number of 

parameters were distinguished, which satisfactorily al-
lowed for:

 – building a soft mathematical model approximat-
ing the behaviour of the shaped profile;

 – preparation of a set of observations from numer-
ical modelling allowing for initial testing of hy-
potheses about the significance of the impact of 
individual parameters;

 – indication of prospective directions of bench re-
search, in conditions of a clear reduction in the 
number of necessary experiments;

 – development of assumptions for the preparation 
of a more reliable model allowing for the optimi-
sation of the process conditions according to the 
selected criteria. 

Moreover, the two-stage procedure proposed in 
section 2 allows for a significant reduction in the time 
needed to develop directions of action with significant 
research potential. 
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