Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Using Atangana-Baleanu fractional variable-order derivatives, this article investigates the impact of memory effects on glucose-insulin dynamics. The uniqueness and boundedness of solutions are established using fixed-point theory. By adjusting the fractional derivative order, different chaotic behaviors can be observed. An Atangana-Baleanu fractional framework is used to analyze Hyers-Ulam stability using the Sumudu transform. Through linear controllers, the Atangana-Baleanu fractional chaotic system can be synchronized, achieving equilibrium. This control mechanism could be beneficial to diabetes management, such as insulin pumps that regulate insulin in real time based on glucose levels. By controlling Atangana-Baleanu fractional order chaos, glucose-insulin regulation could be improved.
Rocznik
Tom
Strony
44--55
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
autor
- Department of Mathematics, Faculty of Science, Al-Baha University, Saudi Arabia
- Department of Mathematics and Statistics, Faculty of Science, Beni-Suef University, Egypt
autor
- Department of Mathematics and Statistics, College of Science, Imam Mohammed Ibn Saud Islamic University, Riyadh, Saudi Arabia
Bibliografia
- [1] Bagust, A., Hopkinson, P.K., Maslove, L., Currie, C.J. (2002). The projected health care burden of type 2 diabetes in the UK from 2000 to 2060. Diabetic Medicine, 19(1), 1-5.
- [2] Baghdadi, G., Hosseini, S.M., & Fathizadeh, A. (2015). Nonlinear dynamics of glucose-insulin interactions: An experimental study and mathematical modeling. Journal of Theoretical Biology, 364, 21-30.
- [3] Molnar, G.D., Taylor, W.F., & Rosevear, J.W. (1972). Day-to-day variation of continuously monitored glycaemia: A further measure of diabetic instability. Diabetologia, 8(6), 342-348.
- [4] Rolo, A.P., & Palmeira, C.M. (2006). Diabetes and mitochondrial function: Role of hyperglycemia and oxidative stress. Toxicology and Applied Pharmacology, 212, 2, 167-178.
- [5] Ackerman, E., et al. (1964). A mathematical model of the glucose-tolerance test. Phys. Med. Biol., 9(2), 203.
- [6] Bajaj, M., Pintar, J., & Shoelson, S.E. (1987). Insulin action in cultured cells expressing the omega-cell line. Journal of Biological Chemistry, 262(12), 5563-5566.
- [7] Shabestari, M., Salimifar, R., & Rabiee, M. (2018). Chaotic behavior of glucose-insulin regulatory system using a predator-prey model. Chaos, Solitons & Fractals, 114, 1-10.
- [8] Holt, R.I., et al. (2017). Textbook of Diabetes (5th ed.). Wiley-Blackwell.
- [9] Uc ¸ar, S. (2021). Existence and uniqueness results for a smoking model with determination and education in the frame of non-singular derivatives. Discrete and Continuous Dynamical Systems-S, 14(7), 2571-2589.
- [10] Uc ¸ar, S., ¨ Ozdemir, N., Koca, ˙ I. et al. (2020). Novel analysis of the fractional glucose-insulin regulatory system with non-singular kernel derivative. Eur. Phys. J. Plus, 135, 414.
- [11] Uc ¸ar, E., et al. (2021). Investigation of e-cigarette smoking model with Mittag-Leffler kernel. Found. Comput. Decis. Sci., 46, 97-109.
- [12] Uc ¸ar, S., et al. (2019). Mathematical analysis and numerical simulation for a smoking model with Atangana-Baleanu derivative. Chaos, Solitons & Fractals, 118, 300-306.
- [13] ¨ Ozdemir, N., & Uc¸ar, E. (2020). Investigating of an immune system-cancer mathematical model with Mittag-Leffler kernel[J]. AIMS Mathematics, 5(2), 1519-1531.
- [14] Yadav, A.K., et al. (2022). Reflection of hygrothermal waves in a nonlocal theory of coupled thermo-elasticity. Mechanics of Advanced Materials and Structures, 31(5), 1083-1096.
- [15] Marin, M., Abbas, I., & Kumar, R. (2014). Relaxed Saint-Venant principle for thermoelastic micropolar diffusion. Structural Engineering and Mechanics, 51, 4, 651-662.
- [16] Marin, M., & Marinescu, C. (1998). Thermoelasticity of initially stressed bodies: Asymptotic equipartition of energies. International Journal of Engineering Science, 36(1), 73-86.
- [17] Marin, M. (2009). On the minimum principle for dipolar materials with stretch. Nonlinear Analysis: Real World Applications, 10(3), 1572-1578.
- [18] Abouelregal, A.E., Marin, M., & Askar, S.S. (2023). Analysis of the magneto-thermoelastic vibrations of rotating Euler-Bernoulli nanobeams using the nonlocal elasticity model. Boundary Value Problems, 2023, 21.
- [19] Almutairi, N., & Saber, S. (2023). Chaos control and numerical solution of time-varying fractional Newton-Leipnik system using fractional Atangana-Baleanu derivatives. AIMS Mathematics, 8(11), 25863-25887.
- [20] Yan, T., et al. (2024). Analysis of a Lorenz model using adomian decomposition and fractal--fractional operators. Thermal Science, 28(6B), 5001-5009.
- [21] Alsulami, A., et al. (2024). Controlled chaos of a fractal-fractional Newton-Leipnik system. Thermal Science, 28(6B), 5153-5160.
- [22] Alhazmi, M., et al. (2024). Numerical approximation method and chaos for a chaotic system in sense of Caputo-Fabrizio operator. Thermal Science, 28(6B), 5161-5168.
- [23] Saber, S., &Alalyani, A.(2022). Stability analysis and numerical simulations of IVGTT glucoseinsulin interaction models with two time delays. Mathematical Modelling and Analysis, 27, 3, 383-407.
- [24] Caputo, M., & Fabrizio, M. (2015). A new definition of fractional derivative without singular kernel. Progress in Fractional Differentiation and Applications, 1(2), 73-85.
- [25] Elsadany, A.A. (2012). Complex dynamics in a fractional-order predator-prey model. Nonlinear Dynamics, 67(4), 2281-2289.
- [26] Rihan, F.A., & Hashim, S. (2016). Fractional modeling of the immune response with memory. Mathematical Methods in the Applied Sciences, 39(4), 1009-1020.
- [27] Atangana, A., & Baleanu, D. (2016). New fractional derivatives with non-local and non-singular kernel: Theory and application to heat transfer model. Thermal Science, 20(2), 763-769.
- [28] Saber, S. (2024). Control of chaos in the Burke-Shaw system of fractal-fractional order in the sense of Caputo-Fabrizio. Journal of Applied Mathematics and Computational Mechanics, 23(1), 83-96.
- [29] Ahmed, K., et al. (2024). Analytical solutions for a class of variable-order fractional Liu system under time-dependent variable coefficients. Results in Physics, 56, 107311.
- [30] Almutairi, N., & Saber, S. (2024). Existence of chaos and the approximate solution of the Lorenz-L¨ u-Chen system with the Caputo fractional operator. AIP Advances, 14(1), 015112.
- [31] Atangana, A. (2017). Fractal-fractional differentiation and integration: connecting fractal calculus and fractional calculus to predict complex systems. Chaos Solitons Fractals, 102, 396-406.
- [32] Rajagopal, K., & Karthikeyan, A. (2017). Chaos in fractional-order systems with biomedical applications. Chaos: An Interdisciplinary Journal of Nonlinear Science, 27(6), 063118.
- [33] Ulam, S.M. (1960). A Collection of Mathematical Problems. Interscience Publ., New York.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1e91d039-f3b0-4687-a3bc-4f0db4cf37f3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.