PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modeling and Performance Analysis of Hydrogen Powered Hybrid Bike

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
One of the most straightforward and affordable ways to produce hydrogen is by alkaline water electrolysis. In order to split water molecules into hydrogen and oxygen, an electrolyser is often subjected to current levels of 1.23V. The electrodes in an electrolytic cell are the primary structural component. The cathode electrode type is the one where hydrogen is created via the reduction reaction between the two types of electrodes. LPG is combined with hydrogen at a 4:1 ratio to lower the combustion energy because hydrogen cannot be used directly in a traditional SI engine due to its higher energy production during combustion. With the aid of a vaporizer unit, the hydrogen and LPG are combined in the necessary ratio. Through the bypass line created on the input manifold before the carburettor, where air is also mixed with the hydrogen-LPG fuel with the A/F ratio of 17:1 (stoichiometric ratio) for complete combustion, the fuel mixture is transported to the engine's combustion chamber. Due to the usage of LPG and hydrogen, full combustion may occur as a result of the production of a blue flame during combustion. Better mixing of the fuel and air can be achieved since the fuel mixture is conveyed in va-por state instead of semi-liquid form as in a conventional SI engine. This approach of using mix fuel (LPG+H2) for con-ventional SI engines can lower nitrogen oxide and hydrocarbon values in the exhaust gas more effectively.
Słowa kluczowe
Twórcy
  • Department of Mechanical Engineering, Mepco Schlenk Engineering College, Sivakasi 626005, Tamil Nadu, India
  • Faculty of Mechanical Engineering, Opole University of Technology, Proszkowska 76, 45-758 Opole, Poland
  • Faculty of Mechanical Engineering, Opole University of Technology, Proszkowska 76, 45-758 Opole, Poland
  • Department of Artificial Intelligence, Mepco Schlenk Engineering College, Sivakasi 626005, Tamil Nadu, India
  • Department of Environmental Engineering, Faculty of Engineering, Al-Hussein Bin Talal University, P.O.Box 20, Ma’an, Jordan
Bibliografia
  • 1. Hu, S., Guo, B., Ding, S., Yang, F., Dang, J., Liu, B., Gu, J., Ma, J., Ouyang, M.A comprehensive review of alkaline water electrolysis mathematical modeling. Appl Energy 2022; 327, https://doi. org/10.1016/j.apenergy.2022.120099
  • 2. Sankaranarayanan, R., Hynes, N.R.J., Nikolova, M.P., Królczyk, J.B. Self-pierce riveting: Development and assessment for joining polymer-metal hybrid structures in lightweight automotive applications. Polymers 2023; 15: 4053. https://doi. org/10.3390/polym15204053
  • 3. Sankaranarayanan, R., Hynes, N.R.J., Li, D., Chrysanthou A., Amancio-Filho S.T. Review of research on friction riveting of polymer/metal light weight multi-material structures. Trans Indian Inst Met 2021; 74: 2541–2553. https://doi.org/10.1007/ s12666-021-02356-w
  • 4. Hynes, N.R.J.R., Sankaranarayanan, J., Sujana, A.J. A decision tree approach for energy efficient friction riveting of polymer/metal multi-material lightweight structures, Journal of Cleaner Production 2021; 292: 125317. https://doi.org/10.1016/j.jclepro.2020.125317
  • 5. Kumar, R., Hynes N.R.J., Thermal drilling processing on sheet metals: A review. International Journal of Lightweight Materials and Manufacture 2019; (2): 193–205. https://doi.org/10.1016/j.ijlmm.2019.08.003
  • 6. SA University Team Unveils Hydrogen Bike. Fuel Cells Bulletin 2010; 4. https://doi.org/10.1016/ s1464-2859(10)70276-5
  • 7. Fragiacomo, P., Genovese, M. Developing a mathematical tool for hydrogen production, compression and storage. Int J Hydrogen Energy 2020; 45(35): 17685– 17701. https://doi.org/10.1016/j.ijhydene.2020.04.269
  • 8. Hosseini, S.E., Andwari, A.M., Wahid, M.A., Bagheri, G.A Review on green energy potentials in Iran. Renewable and Sustainable Energy Reviews 2013; 27/C: 533–545. https://doi.org/10.1016/j.rser.2013.07.015
  • 9. Jain, I.P., Hydrogen the fuel for 21st century. Int J Hydrogen Energy 2009; 34(17): 7368–7378. https:// doi.org/10.1016/j.ijhydene.2009.05.093
  • 10. Apostolou, D., Assessing the operation and different refuelling cost scenarios of a fuel cell electric bicycle under low-pressure hydrogen storage. Int J Hydrogen Energy 2020; 45(43): 23587–23602. https://doi.org/10.1016/j.ijhydene.2020.06.071
  • 11. Barco-Burgos, J., Eicker, U., Saldaña-Robles, N., Saldaña-Robles, A.L., Alcántar-Camarena, V. Thermal characterization of an alkaline electrolysis cel for hydrogen production at atmospheric pressure. Fuel 2020; 276: 117910. https://doi.org/10.1016/j. fuel.2020.117910
  • 12. De Groot, M.T., Kraakman, J., Garcia Barros, R.L. Optimal operating parameters for advanced alkaline water electrolysis. Int J Hydrogen Energy 2022; 47(82): 34773–34783. https://doi.org/10.1016/j. ijhydene.2022.08.075
  • 13. Shiva Kumar, S., Lim, H. An overview of water electrolysis technologies for green hydrogen production. Energy Reports 2022; 8: 13793–13813.
  • 14. Grigoriev, S.A., Millet, P., Fateev, V.N. Evaluation of carbon-supported pt and pd nanoparticles for the hydrogen evolution reaction in pem water electrolysers. J Power Sources 2008; 177(2): 281–285. https://doi.org/10.1016/j.jpowsour.2007.11.072
  • 15. Cardeña, R., Moreno, G., Valdez-Vazquez, I., Buit- rón, G. Optimization of volatile fatty acids concentration for photofermentative hydrogen production by a consortium. In: Proceedings of the International Journal of Hydrogen Energy 2015; 40(48): 17212–17223. https://doi.org/10.1016/j.ijhydene.2015.10.020
  • 16. Grigoriev, S.A., Mamat, M.S., Dzhus, K.A., Walker, G.S., Millet, P. Platinum and palladium nano-particles supported by graphitic nano-fibers as catalysts for PEM water electrolysis. Int J Hydrogen Energy 2011; 36(6): 4143–4174. https://doi.org/10.1016/j. ijhydene.2010.07.013
  • 17. Lee, J., Alam, A., Ju, H. Multidimensional and transient modeling of an alkaline water electrolysis cell. Int J Hydrogen Energy 2021; 4626: 13678–13690. https://doi.org/10.1016/j.ijhydene.2020.10.133
  • 18. Zhao, M.J., He, Q., Xiang, T., Ya, H.Q., Luo, H., Wan, S., Ding, J., He, J.B. Automatic operation of decoupled water electrolysis based on bipolar electrode. Renew Energy 2023; 203: 586–591. https:// doi.org/10.1016/j.renene.2022.12.083
  • 19. Appleby, A.J., Crepy, G., Jacquelin, J. High efficiency water electrolysis in alkaline solution. Int J Hydrogen Energy 1978; 3(1): 21–37. https://doi. org/10.1016/0360-3199(78)90054-X
  • 20. Guha, A., Sahoo, M., Alam, K., Rao, D.K., Sen, P., Narayanan, T.N. Role of water structure in alkaline water electrolysis. iScience 2022; 25(8): 104835. https://doi.org/10.1016/j.isci.2022.104835
  • 21. Yang, Y., De La Torre, B., Stewart, K., Lair, L., Phan, N.L., Das, R., Gonzalez, D., Lo, R.C. The schedulingof alkaline water electrolysis for hydrogen produc tion using hybrid energy sources. Energy Convers Manag 2022; 257: 115408. https://doi.org/10.1016/j. enconman.2022.115408
  • 22. Borsboom-Hanson, T., Holm, T., Mérida, W. A high temperature and pressure framework for supercritical water electrolysis. Int J Hydrogen Energy 2022; 47(48): 20705–20717. https://doi.org/10.1016/j. ijhydene.2022.04.208
  • 23. Hu, X., Liu, M., Huang, Y., Liu, L., Li, N. Sulfonate functionalized polybenzimidazole as ion-solvating membrane toward high-performance alkaline water electrolysis. J Memb Sci 2022; 663: 121005. https:// doi.org/10.1016/j.memsci.2022.121005
  • 24. Sebbahi, S., Nabil, N., Alaoui-Belghiti, A., Laasri, S., Rachidi, S., Hajjaji, A. Assessment of the three most developed water electrolysis technologies: alkaline water electrolysis, proton exchange membrane and solid-oxide electrolysis. Mater Today Proc 2022; 66(1): 140–145. https://doi.org/10.1016/j.matpr.2022.04.264
  • 25. Zhao, P., Wang, J., He, W., Xia, H., Cao, X., Li, Y., Sun, L. Magnetic field pre-polarization enhances the efficiency of alkaline water electrolysis for hydrogen production. Energy Convers Manag 2023; 283: 116906. https://doi.org/10.1016/j.enconman.2023.116906
  • 26. Stojić, D.L.; Marčeta, M.P.; Sovilj, S.P.; Miljanić, Š.S. Hydrogen generation from water electrolysis – possibilities of energy saving. In Proceedings of the Journal of Power Sources 2003; 118(1): 315–319. https://doi.org/10.1016/S0378-7753(03)00077-6
  • 27. Ball, M., Wietschel, M. The future of hydrogen – opportunities and challenges. Int J Hydrogen Energy 2009 34(2): 615–627. https://doi.org/10.1016/j. ijhydene.2008.11.014
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1e8f7f07-7731-43e0-96fa-a08b8c8be5c0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.