PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Improving the operation characteristics of non-insulated overhead power lines

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Poprawa charakterystyk pracy nieizolowanych napowietrznych linii elektroenergetycznych
Języki publikacji
EN
Abstrakty
EN
Methods of protection of wires of overhead power lines of group "anti-icing" are analyzed. The expediency of applying the winding method of protection of wires of overhead lines in operation for a long time is shown. Based on numerical simulations of the hydrodynamic problem, the degree of influence of the protective coating on the wind load of the wire is analyzed. The research results showed a decrease in the modified wire's drag coefficient with increasing wind speed.
PL
Przeanalizowano metody ochrony przewodów linii napowietrznych z grupy „przeciwoblodzeniowa”. Pokazano celowość zastosowania metody uzwojenia do ochrony przewodów linii napowietrznych eksploatowanych od dłuższego czasu. Wykorzystując symulacje numeryczne zagadnienia hydrodynamicznego analizowany jest stopień wpływu powłoki ochronnej na obciążenie żyły kabla wiatrem. Wyniki badań wykazały spadek współczynnika rezystancji zmodyfikowanej żyły wraz ze wzrostem prędkości wiatru.
Rocznik
Strony
28--32
Opis fizyczny
Bibliogr. 22 poz., rys.
Twórcy
  • Central Ukrainian National Technical University, pr. Universytetskyi 8, 25006 Kropyvnytskyi, Ukraine
  • Central Ukrainian National Technical University, pr. Universytetskyi 8, 25006 Kropyvnytskyi, Ukraine
  • Kharkiv Petro Vasylenko National Technical University of Agriculture, ul. Alchevskih 44, 61002 Kharkiv, Ukraine
  • Lviv Polytechnic National University, ul. Bandery 12, 79013 Lviv, Ukraine
autor
  • Lviv Polytechnic National University, ul. Bandery 12, 79013 Lviv, Ukraine
Bibliografia
  • [1] Performance report of Energy and Utilities the National Regulatory Commission in 2019 the year (2020, May 27). Retrieved from https://www.nerc.gov.ua/data/filearch/Catalog3/Richnyi_zvit_N KREKP_2019.pdf
  • [2] IEC 61089, “Round wire concentric lay overhead electrical stranded conductors,” Published 1991, 65 p.
  • [3] Farzaneh, M., Atmospheric Icing of Power Networks, Springer Netherlands, 2014, 381 p.
  • [4] Oleksandr А. Savchenko, Оleksandr О. Miroshnyk, Stanislav V. Dyubko, Taras Shchur, Paweł Komada, Kanat Mussabekov, Justification of ice melting capacity on 6-10 kV OPL distributing power networks based on fuzzy modeling, Przegląd Elektrotechniczny, 95 (2019), nr 5, 106-109, doi: 10.15199/48.2019.05.26
  • [5] Kozlovskyi, O., Trushakov, D., Rendzinyak, S., Temperature influence of load current of overhead electrical distribution networks in difficult weather conditions, Acta Technica CSAV (Ceskoslovensk Akademie Ved), 63(2018), No. 5, 701-708
  • [6] Stakhiv, P., Rendzinyak, S., Hoholyuk, O., Modeling of electric power systems based on diakoptic approach and parallel algorithms in modern computer tools, Przegląd Elektrotechniczny, 86 (2010), nr 1, 115-117
  • [7] Pat. 3276280 Japan, ICI5 H01 B 7/28, H 01 B 7/34. Snow and ice sticking reducing / light and heat shielding type coated power transmission line / Toyoda Minoru, Tomizawa Nobuo, Matsumoto Kiyoshi and et.; applicants and owners KANSAI Electric Power Co; Soko Seiren KK; Mitsubishi Heavy IND Ltd. No JP19910276280; fil. 30.10.1991; pub. 16.4.1993.
  • [8] Higuchi N., Snow Accumulation Prevention Methods, Hokkaido Electric Power, 1972.
  • [9] V.N. Sedunov, A.V. Nachalov, N.G. Tsaranov, e t c . , Proposals for the use of fluoroplastic surface coatings to reduce the mass of ice-frost deposits on wires and lightning protection cables, Electro, 2005, No. 5, 46-48 (in Russian)
  • [10] Pat. 138930 Ukraine, H02G 7/16 (2006.01). Method of forming anti-icing coating on uninsulated wires and lightning protection cables of overhead power transmission line / O. A. Kozlovskyi; applicants and owners Central Ukrainian National Technical University; fil. 03.06.2019; pub. 10.12.2019 (in Ukrainian)
  • [11] Kozlovskyi, O, Teliuta R., Improvement of design of the Non-insulated wires of the operating overhead power lines, Visnyk Kharkivsʹkoho natsionalʹnoho tekhnichnoho universytetu silʹsʹkoho hospodarstva imeni Petra Vasylenka, 2019, issue 201, 21-22
  • [12] N. Pouliot, P. Richard and S. Montambault, LineScout Technology Opens the Way to Robotic Inspection and Maintenance of High-Voltage Power Lines, IEEE Power and Energy Technology Systems Journal, March 2015, Vol. 2, No. 1, pp. 1-11, doi: 10.1109/JPETS.2015.2395388
  • [13] Naoshi Kikuchi, Yutaka Matsuzaki, Hideo Banse, Takao Kaneko, Akihiro Yukino and Hirotaka I s h i d a , Development of Conductors with Reduced Wind Drag and Wind Noise for Overhead Power Transmission Lines, Furukawa Review, 2002, No. 21, 50-55
  • [14] Dong Qing Li, Zhen Li, Zhen Liu, Long Liu, Chang Long Yang, Wei Fan, Lu Yu Yang and Jia Jun Si, Application Research on Drag Reduced Conductors for Electric Power Transmission Lines in Strong Wind Areas, Proc. of 2016 International Conference on Electronic, Information and Computer Engineering, ICEICE 2016, 26-27 April 2016, Vol. 448, March 2016, Article number 01093, doi: 10.1051/matecconf/20164401093
  • [15] Chao M., Jun Z., Mingnian W., Yaojun M., Large Eddy Simulation of Flow over a New Type of Low-Wind- Pressure Conductor Using WALE Model, Proc. of 2019 16th International Bhurban Conference on Applied Sciences and Technology, IBCAST 2019, 8-12 January 2019, 13 March 2019, pp. 811-815, Article number 8667236, doi: 10.1109/IBCAST.2019.8667236
  • [16] ANSYS Fluent User’s Guide R.19.2, ANSYS Inc., Canonsburg, PA, August 2018.
  • [17] Ravindran, Magesh R., Computational Study for Analysis of the Potential for Drag Reduction for Flow around a Circular Cylinder and Cactus-Shaped Cylinders, Journal of Mechanical and Civil Engineering, 2015, 13-24
  • [18] Hyun A. Son, Sungsu Lee and Jooyong Lee, Numerical Analysis of Drag Force Acting on 2D Cylinder Immersed in Accelerated Flow, Water, Vol. 12, No. 6, 2020, A.N. 1970, doi: 10.3390/w12061790
  • [19] Milton van Dyke, An Album of Fluid Motion, Moscow, Mir, 1986,184 p. (in Russian)
  • [20] Ronald L. Panton, Incompressible flow, 4th Edition, Wiley, 2013, 912 p.
  • [21] C. Demartino, F. Ricciardelli, Aerodynamics of nominally circular cylinders: A review of experimental results for Civil Engineering applications, Engineering Structures, 137 (2017), 76-114, doi: 10.1016/j.engstruct.2017.01.023
  • [22] Regulations of arrangement of electrical installations, Kharkiv, Fort, 2017, 760 p. (in Ukrainian)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1e8c47c7-4872-4387-83b2-b05f65d7dc4c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.