PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Stable aqueous dispersions of bare and double layer functionalized superparamagnetic iron oxide nanoparticles for biomedical applications

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Superparamagnetic iron oxide nanoparticles (SPIONs) have attracted the particular interest of scientists from various disciplines since their obtaining to the present day. The physicochemical and pharmacokinetic properties of SPIONs-containing magnetic nanofluids, and their applicability in biomedicine, largely depend on the stability of the colloidal system, particle size, size distribution, net magnetic moment, phase composition, and type and properties of stabilizers. Also, in some cases, when using magnetic nanoparticles for biomedical purposes, it is necessary that the stabilizing ligands of nanoparticles should not significantly change the magnetic properties. From this point of view, the preparation of stable colloidal systems containing bare iron oxide nanoparticles (BIONs) in water at physiological pH attracts particular attention and becomes increasingly popular in scientific circles. This study is focused on the development of the synthesis of aqueous suspensions of SPIONs stabilized with various organic molecules (oleic acid [OA] and poly(ethylene glycol) monooleate - with molecular weights 460 and 860) using a modified controlled chemical coprecipitation reaction, as well as stable nanofluids containing BIONs in an aqueous medium at neutral pH (near-physiological). The obtained samples were characterized using X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy, small-angle x-ray scattering (SAXS), dynamic light scattering (DLS), electrophoretic light scattering (ELS), and Vibrating Sample Magnetometry.
Wydawca
Rocznik
Strony
331--345
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
  • Vladimer Chavchanidze Institute of Cybernetics of the Georgian Technical University, 0186 Tbilisi, Georgia
  • Vladimer Chavchanidze Institute of Cybernetics of the Georgian Technical University, 0186 Tbilisi, Georgia
  • Vladimer Chavchanidze Institute of Cybernetics of the Georgian Technical University, 0186 Tbilisi, Georgia
  • Centre for Energy Research, Budapest, Hungary
  • Vladimer Chavchanidze Institute of Cybernetics of the Georgian Technical University, 0186 Tbilisi, Georgia
  • Ivane Javakhishvili Tbilisi State University, 0179 Tbilisi, Georgia
  • Ivane Javakhishvili Tbilisi State University, 0179 Tbilisi, Georgia
autor
  • Ivane Javakhishvili Tbilisi State University, 0179 Tbilisi, Georgia
  • Institute of Inorganic Chemistry, Graz University of Technology, Graz, Austria
Bibliografia
  • [1] Vekas L. Magnetic nanofluids properties and some applications. Rom J Phys. 2004;49(9–10):707–21.
  • [2] Genchi GG, Marino A, Grillone A, Pezzini I, Ciofani G. Remote control of cellular functions: The role of smart nanomaterials in the medicine of the future. Adv Healthc Mater. 2017;6(9):1700002. https://doi.org/10.1002/adhm.201700002
  • [3] Abdi H, Motlagh SY, Soltanipour H. Study of magnetic nanofluid flow in a square cavity under the magnetic field of a wire carrying the electric current in turbulence regime. Results Phys. 2020;18:103224. https://doi.org/10.1016/j.rinp.2020.103224
  • [4] Szalai I, Dietrich S. Phase transitions and ordering of confined dipolar fluids. Eur Phys J E. 2009;28(3):347–59. https://doi.org/10.1140/epje/i2008-10424-2
  • [5] Liang YJ, Xie J, Yu J, Zheng Z, Liu F, Yang A. Recent advances of high performance magnetic iron oxide nanoparticles: Controlled synthesis, properties tuning and cancer theranostics. Nano Select. 2020;2(2):216–50. https://doi.org/10.1002/nano.202000169
  • [6] Walter A, Garofalo A, Parat A, Martinez H, Felder-Flesch D, Begin-Colin S. Functionalization strategies and dendronization of iron oxide nanoparticles. Nanotechnol Rev. 2015;4(6):581–93. https://doi.org/10.1515/ntrev-2015-0014
  • [7] Das GK, Stark DT, Kennedy IM. Potential toxi-city of Up-converting nanoparticles encapsulated with a bilayer formed by ligand attraction. Langmuir. 2014;30(27):8167–76. https://doi.org/10.1021/la501595f
  • [8] De Sousa ME, Van Raap MBF, Rivas PC, Zélis PM, Girardin P, Pasquevich GA, et al. Stability and relaxation mechanisms of citric acid coated magnetite nanoparticles for magnetic hyperthermia. J Phys Chem C. 2013;117(10):5436–45. https://doi.org/10.1021/jp311556b
  • [9] Lai CW, Low FW, Tai MF, Hamid SBA. Iron oxide nanoparticles decorated oleic acid for high colloidal stability. Adv Polym Technol. 2018;37(6):1712–21. https://doi.org/10.1002/adv.21829
  • [10] Rahme K, Dagher N. Chemistry routes for copolymer synthesis containing peg for targeting, imaging, and drug delivery purposes. Pharmaceutics. 2019;11(7):327. https://doi.org/10.3390/pharmaceutics11070327
  • [11] Zhang X, Guo Z, Zhang X, Gong L, Dong X, Fu Y, et al. Mass production of poly(ethylene glycol) monooleate-modified core-shell structured upconversion nanoparticles for bio-imaging and photodynamic therapy. Sci Rep. 2019;9(1):5212. https://doi.org/10.1038/s41598-019-41482-w
  • [12] Zhang X, Tian G, Yin W, Wang L, Zheng X, Yan L, et al. Controllable generation of nitric oxide by near-infrared-sensitized upconversion nanoparticles for tumor therapy. Adv Funct Mater. 2015;25(20):3049–3056. https://doi.org/10.1002/adfm.201404402
  • [13] Xiong F, Li J, Wang H, Chen Y, Cheng J, Zhu J. Synthesis, properties and application of a novel series of one-ended monooleate-modified poly(ethylene glycol) with active carboxylic terminal. Polymer (Guildf). 2006;47(19):6636–41. https://doi.org/10.1016/j.polymer.2006.07.020
  • [14] Magro M, Vianello F. Bare iron oxide nanoparticles: Surface tunability for biomedical, sensing and environmental applications. Nanomaterials. 2019;9(11):1608. https://doi.org/10.3390/nano9111608
  • [15] Schwaminger SP, Fraga-García P, Blank-Shim SA, Straub T, Haslbeck M, Muraca F, et al. Magnetic one-step purification of his-tagged protein by bare iron oxide nanoparticles. ACS Omega. 2019;4(2):3790–9. https://doi.org/10.1021/acsomega.8b03348
  • [16] Oriekhova O, Stoll S. Investigation of FeCl3 induced coagulation processes using electrophoretic measurement, nanoparticle tracking analysis and dynamic light scattering: Importance of pH and colloid surface charge. Colloids Surfaces A. 2014;461:212–9. https://doi.org/10.1016/j.colsurfa.2014.07.049
  • [17] Laurent S, Forge D, Port M, Roch A, Robic C, Elst LV, et al. Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations and biological applications. Chem Rev. 2008;108(6):2064–2110. https://doi.org/10.1021/cr068445e
  • [18] Yang XC, Shang YL, Li YH, Zhai J, Foster NR, Li YX, et al. Synthesis of monodisperse iron oxide nanoparticles without surfactants. J Nanomater. 2014;1–5. https://doi.org/10.1155/2014/740856
  • [19] Laurent S, Henoumont C, Stanicki D, Boutry S, Lipani E, Belaid S, et al. MRI contrast agents: From molecules to particles. Springer: Singapore; 2017.
  • [20] Tombácz E, Majzik A, Horvát ZS, Illés E. Magnetite in aqueous medium: Coating its surface and surface coated with it. Rom Rep Phys. 2006;58(3):281–6.
  • [21] Sun ZX, Su FW, Forsling W, Samskog PO. Surface characteristics of magnetite in aqueous suspension. J Colloid Interface Sci. 1998;197(1):151–9. https://doi.org/10.1006/jcis.1997.5239
  • [22] Shete PB, Patil RM, Tiwale BM, Pawar SH. Water dispersible oleic acid-coated Fe3O4 nanoparticles for biomedical applications. J Magn Magn Mater. 2015;377:406–10. https://doi.org/10.1016/j.jmmm.2014.10.137
  • [23] Jadhav NV., Prasad AI, Kumar A, Mishra R, Dhara S, Babu KR, et al. Synthesis of oleic acid functionalized Fe3O4 magnetic nanoparticles and studying their interaction with tumor cells for potential hyperthermia applications. Colloids Surfaces B. 2013;108:158–68. https://doi.org/10.1016/j.colsurfb.2013.02.035
  • [24] Liu X, Kaminski MD, Guan Y, Chen H, Liu H, Rosengart AJ. Preparation and characterization of hydrophobic superparamagnetic magnetite gel. J Magn Magn Mater. 2006;306(2):248–53. https://doi.org/10.1016/j.jmmm.2006.03.049
  • [25] Mikelashvili V, Kekutia S, Markhulia J, Saneblidze L, Jabua Z, Almásy L, et al. Folic acid conjugation of magnetite nanoparticles using pulsed electrohydraulic discharges. J Serbian Chem Soc. 2021;86(2):181–94. https://doi.org/10.2298/JSC200414053M
  • [26] Konarev PV, Volkov VV, Sokolova AV, Koch MHJ, Svergun DI. PRIMUS: A Windows PC-based system for small-angle scattering data analysis. J Appl Crystallogr. 2003;36(5):1277–82. https://doi.org/10.1107/S0021889803012779
  • [27] Hopkins JB, Gillilan RE, Skou S. BioXTAS RAW: Improvements to a free open-source program for small-angle X-ray scattering data reduction and analysis. J Appl Crystallogr. 2017;50(5):1545–53. https://doi.org/10.1107/S1600576717011438
  • [28] Svergun DI. Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. Biophys J. 1999;76(6):2879–86. https://doi.org/10.1016/S0006-3495(99)77443-6
  • [29] Bressler I, Pauw BR, Thünemann AF. McSAS: Software for the retrieval of model parameter distributions from scattering patterns. J Appl Crystallogr. 2015;48(3):962–9. https://doi.org/10.1107/S1600576715007347
  • [30] Maldonado-Camargo L, Unni M, Rinaldi C. Magnetic characterization of iron oxide nanoparticles for biomedical applications. Methods Mol Biol. 2017;1570:47–1. https://doi.org/10.1007/978-1-4939-6840-4_4
  • [31] Almásy L, Creanga D, Nadejde C, Rosta L, Pomjakushina E, Ursache-Oprisan M. Wet milling versus co-precipitation in magnetite ferrofluid preparation. J Serbian Chem Soc. 2015;80(3):367–76. https://doi.org/10.2298/JSC140313053A
  • [32] Huang Z, Tang F. Preparation, structure, and magnetic properties of mesoporous magnetite hollow spheres. J Colloid Interface Sci. 2005;281(2):432–6. https://doi.org/10.1016/J.JCIS.2004.08.121
  • [33] Pacakova B, Kubickova S, Reznickova A, Niznansky D, Vejpravova J. Spinel ferrite nanoparticles: Correlation of structure and magnetism. Magn Spinels - Synth Prop Appl. 2017:3–30. https://doi.org/10.5772/66074
  • [34] Sathish S, Balakumar S. Influence of physicochemical interactions of capping agent on magnetic properties of magnetite nanoparticles. Mater Chem Phys. 2016;173:364–71. https://doi.org/10.1016/j.matchemphys.2016.02.024
  • [35] Iyengar SJ, Joy M, Ghosh CK, Dey S, Kotnala RK, Ghosh S. Magnetic, X-ray and Mössbauer studies on magnetite/maghemite core-shell nanostructures fabricated through an aqueous route. RSC Adv. 2014;4(110):64919–29. https://doi.org/10.1039/c4ra11283k
  • [36] Premaratne WA, Priyadarshana WM, Gunawardena SH, De Alwis AA. Synthesis of nanosilica from paddy husk ash and their surface functionalization. J Sci Univ Kelaniya Sri Lanka. 2014;8:33–8. https://doi.org/10.4038/josuk.v8i0.7238
  • [37] Kumar TV, Prabhakar S, Raju GB. Adsorption of oleic acid at sillimanite/water interface. J Colloid Interface Sci. 2002;247(2):275–81. https://doi.org/10.1006/jcis.2001.8131
  • [38] Lu C, Bhatt LR, Jun HY, Park SH, Chai KY. Carboxylpolyethylene glycol-phosphoric acid: A ligand for highly stabilized iron oxide nanoparticles. J Mater Chem. 2012;22(37):19806–11. https://doi.org/10.1039/c2jm34327d
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1e8a1007-f102-4f91-9bcd-b73c4935007a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.