PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Measurements of light transfer through drift ice and landfast ice in the northern Baltic Sea

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this study was to investigate the light transfer through sea ice with a focus on bio-optical substances both in fast ice and in the drift ice zones in the northern Baltic Sea. The measurements included snow and ice structure, spectral irradiance and photosynthetically active radiation below the sea ice. We also measured the concentrations of the three main bio-optical substances which are chlorophyll-a, suspended particulate matter, and coloured dissolved organic matter (CDOM). These bio-optical substances were determined for melted ice samples and for the underlying sea water. The present study provides the first spectral light transfer data set for drift ice in the Baltic Sea. We found high CDOM absorption values typical to the Baltic Sea waters also within sea ice. Our results showed that the transmittance through bare ice was lower for the coastal fast ice than for the drift ice sites. Bio-optical substances, in particular CDOM, modified the spectral distribution of light penetrating through the ice cover. Differences in crystal structure and the amount of gas inclusions in the ice caused variation in the light transfer. Snow cover on ice was found to be the dominant factor influencing the light field under ice, confirming previous studies. In conclusion, snow cover dominated the amount of light under the ice, but did not modify its spectral composition. CDOM in the ice absorbs strongly in the short wavelengths. As pure water absorbs most in the long wavelengths, the light transfer through ice was highest in the green (549-585 nm).
Czasopismo
Rocznik
Strony
347--363
Opis fizyczny
Bibliogr. 54 poz., fot., mapa, rys., tab., wykr.
Twórcy
autor
  • Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
  • Institute for Atmospheric and Earth System Research (INAR), P.O. Box 64, 00014 University of Helsinki, Finland
autor
  • Institute for Atmospheric and Earth System Research (INAR), University of Helsinki, Helsinki, Finland
  • Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570 Bremerhaven, Germany
  • Institute for Chemistry and Biology for the Marine Environment, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
  • Institute for Atmospheric and Earth System Research (INAR), University of Helsinki, Helsinki, Finland
  • Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
Bibliografia
  • [1] Arrigo, K. R., Sullivan, C. W., Kremer, J. N., 1991. A bio-optical model of Antarctic sea ice. J. Geophys. Res. 96 (C6), 10581-10592, https://doi.org/10.1029/91JC00455.
  • [2] Arst, H., 2003. Optical properties and remote sensing of multicomponental water bodies. Springer Science & Business Media.
  • [3] Arst, H., Erm, A., Leppäranta, M., Reinart, A., 2006. Radiative characteristics of ice-covered fresh- and brackish-water bodies. Proc. Est. Acad. Sci. Geol. 55, 3-23.
  • [4] Beltrán-Abaunza, J. M., Kratzer, S., Höglander, H., 2016. Using MERIS data to assess the spatial and temporal variability of phytoplankton in coastal areas. Int. J. Remote Sens. 1-25, https://doi.org/10.1080/01431161.2016.1249307.
  • [5] Doerffer, R., 2002. Protocols for the validation of MERIS water products — PO-TN-MEL-GS-0043. ESA Publ. 1-46.
  • [6] Ehn, J., Granskog, M. A., Reinart, A., Erm, A., 2004. Optical properties of melting landfast sea ice and underlying seawater in Santala Bay, Gulf of Finland. J. Geophys. Res. 109. art. no. C09003, 12 pp. https://doi.org/10.1029/2003JC002042.
  • [7] Granskog, M. A., Kaartokallio, H., Kuosa, H., Thomas, D. N., Vainio, J., 2006. Sea ice in the Baltic Sea — A review. Estuar. Coast. Shelf Sci. 70, 145-160, https://doi.org/10.1016/j.ecss.2006.06.001.
  • [8] Harvey, E. T., Kratzer, S., Andersson, A., 2015. Relationships between colored dissolved organic matter and dissolved organic carbon in different coastal gradients of the Baltic Sea. Ambio 44, 392-401, https://doi.org/10.1007/s13280-015-0658-4.
  • [9] Huttunen, M., Niemi, Å, 1986. Sea-ice algae in the Northern Baltic Sea. Mem. Soc. Fauna Flora Fenn. 62, 58-62.
  • [10] Ikävalko, J., 1998. Further observations on flagellates within sea ice in northern Bothnian Bay, the Baltic Sea. Polar Biol 19, 323-329, https://doi.org/10.1007/s003000050253.
  • [11] Ikävalko, J., Kristiansen, J., Thomsen, H. A., 1994. A revision of the taxonomic position of Syncrypta glomerifera (Chrysophyceae), establishment of a new genus Lepidochrysis and observations on the occurrence of L. glomerifera comb. nov. in brackich water. Nord. J. Bot 14, 339-344, https://doi.org/10.1111/j.1756-1051.1994.tb00617.x.
  • [12] Järvinen, O., Leppäranta, M., 2011. Transmission of solar radiation through the snow cover on floating ice. J. Glaciol. 57, 861-870, https://doi.org/10.3189/002214311798043843.
  • [13] Kari, E., Kratzer, S., Beltrán-Abaunza, J. M., Harvey, E. T., Vaičiūtė, D., 2016. Retrieval of suspended particulate matter from turbidity — model development, validation, and application to MERIS data over the Baltic Sea. Int. J. Remote Sens. 38, 1-21, https://doi.org/10.1080/01431161.2016.1230289.
  • [14] Kari, E., Merkouriadi, I., Walve, J., Leppäranta, M., Kratzer, S., 2018. Development of under-ice stratification in Himmerfjärden bay, north-western Baltic proper, and their effect on the phytoplankton spring bloom. J. Mar. Sci. 186, 85-95, https://doi.org/10.1016/j.jmarsys.2018.06.004.
  • [15] Kauko, H. M., Taskjelle, T., Assmy, P., Pavlov, A. K., Mundy, C. J., Duarte, P., Fernández-Méndez, M., Olsen, L. M., Hudson, S. R., Johnsen, G., Elliott, A., Wang, F., Granskog, M. A., 2017. Windows in Arctic sea ice: Light transmission and ice algae in a refrozen lead. J. Geophys. Res. Ocean 1486-1505, https://doi.org/10.1002/2016JG003626.
  • [16] Kawamura, T., Shirasawa, K., Ishikawa, N., Lindfors, A., Rasmus, K., Granskog, M. A., Ehn, J., Leppäranta, M., Martma, T., Vaikmäe, R., 2001. Time-series observations of the structure and properties of brackish ice in the Gulf of Finland. Ann. Glaciol. 33, 1-4, https://doi.org/10.3189/172756401781818950.
  • [17] Kirk, J. T. O., 2011. Light and photosynthesis in aquatic ecosystems, 3rd edn Cambridge Univ. Press, Cambridge, United Kingdom 662 pp.
  • [18] Kowalczuk, P., Stedmon, C. A., Markager, S., 2006. Modeling absorption by CDOM in the Baltic Sea from season, salinity and chlorophyll. Mar. Chem. 101, 1-11, https://doi.org/10.1016/j.marchem.2005.12.005.
  • [19] Kratzer, S., 2000. Bio-optical studies of coastal waters. University of Wales, Bangor Ph.D. thesis.
  • [20] Kratzer, S., Håkansson, B., Sahlin, C., 2003. Assessing Secchi and photic zone depth in the Baltic Sea from satellite data. Ambio 32, 577-585, https://doi.org/10.1579/0044-7447-32.8.577.
  • [21] Kratzer, S., Moore, G., 2018. Inherent Optical Properties of the Baltic Sea in Comparison to Other Seas and Oceans. Remote Sens 10, 1-28, https://doi.org/10.3390/rs10030418.
  • [22] Kratzer, S., Tett, P., 2009. Using bio-optics to investigate the extent of coastal waters: A Swedish case study. Eutrophication in Coastal Ecosystems. Springer, Amsterdam, 169-186.
  • [23] Lei, R., Leppäranta, M., Erm, A., Jaatinen, E., Pärn, O., 2011. Field investigations of apparent optical properties of ice cover in Finnish and Estonian lakes in winter 2009. Est. J. Earth Sci 60, 50-64, https://doi.org/10.3176/earth.2011.1.05.
  • [24] Leppäranta, M., 2015. Freezing of lakes and the evolution of their ice cover, 1st edn Springer, Praxis, Cichester, 301 pp., https://doi.org/10.1007/978-3-642-29081-7.
  • [25] Leppäranta, M., 2011. The Drift of Sea Ice, 2nd edn. Springer, Praxis, Chichester, 347 pp., https://doi.org/10.1007/978-3-642-04683-4.
  • [26] Leppäranta, M., 1983. A growth model for black ice, snow ice and snow thickness in subarctic basins. Hydrol. Res. 14, 59-70, https://doi.org/10.2166/nh.1983.0006.
  • [27] Leppäranta, M., Myrberg, K., 2009. Physical Oceanography of the Baltic Sea. Springer, Praxis, Chichester, 401 pp., https://doi.org/10.1007/978-3-540-79703-6.
  • [28] Leppäranta, M., Reinart, A., Erm, A., Arst, H., Hussainov, M., Sipelgas, L., 2003. Investigation of Ice and Water Properties and Under-ice Light Fields in Fresh and Brackish Water Bodies. Nord. Hydrol. 34, 245-266, https://doi.org/10.2166/nh.2003.0006.
  • [29] Leppäranta, M., Tikkanen, M., Shemeikka, P., 1998. Observations of Ice and Its Sediments on the Baltic Sea Coast. Hydrol. Res. 29, 199-220.
  • [30] McDougall, T. J., Barker, P. M., 2011. Getting started with TEOS-10 and the Gibbs Seawater (GSW) Oceanographic Toolbox. SCOR/IAPSO WG127, 28 pp.
  • [31] Müller, S., Vähätalo, A. V., Granskog, M. A., Autio, R., Kaartokallio, H., 2011. Behaviour of dissolved organic matter during formation of natural and artificially grown Baltic Sea ice. Ann. Glaciol. 52, 233-241, https://doi.org/10.3189/172756411795931886.
  • [32] Ohde, T., Siegel, H., Gerth, M., 2007. Validation of MERIS Level-2 products in the Baltic Sea, the Namibian coastal area and the Atlantic Ocean. Int. J. Remote Sens. 28, 609-624, https://doi.org/10.1080/01431160600972961.
  • [33] Palosuo, E., 1963. The Gulf of Bothnia in winter. II Freezing and ice forms, Merentutkimuslaitoksen Julkaisu/ Havsforskningsinstitutets Skrift. Finnish Institute of Marine Research, Helsinki, Finland.
  • [34] Palosuo, E., 1961. Crystal structure of brackish and freshwater ice. Bull. Int. Assoc. Sci. Hydrol. 54, 9-14.
  • [35] Parsons, T. R., Maita, Y., Lalli, C. M., 1984. A Manual of Chemical and Biological Methods for Seawater Analysis. Pergamon Press, Oxford 188 pp. https://doi.org/10.1002/iroh.19850700634.
  • [36] Perovich, D. K., 1996. The Optical Properties of Sea Ice. In: Leppäranta, M. (Ed.), Physics of Ice-Covered Seas, 1. Univ. Helsinki, Helsinki, 195-230.
  • [37] Perovich, D. K., Roesler, C. S., Pegau, W. S., 1998. Variability in Arctic sea ice optical properties. J. Geophys. Res. Ocean 103, 1193-1208, https://doi.org/10.1029/97JC01614.
  • [38] Pierson, D. C., Kratzer, S., Strömbeck, N., Håkansson, B., 2008. Relationship between the attenuation of downwelling irradiance at 490 nm with the attenuation of PAR (400 nm-700 nm) in the Baltic Sea. Remote Sens. Environ. 112, 668-680, https://doi.org/10.1016/j.rse.2007.06.009.
  • [39] Pope, R. M., Fry, E. S., 1997. Absorption spectrum (380-700 nm) of pure water. II . Integrating cavity measurements. Appl. Opt. 36, 8710-8723.
  • [40] Rasmus, K., Ehn, J., Granskog, M., Kärkäs, E., Leppäranta, M., Lindfors, A., Pelkonen, A., Rasmus, S., Reinart, A., 2002. Optical Measurements of Sea Ice in the Gulf of Finland. Hydrol. Res. 33, 207-226.
  • [41] Reinart, A., Arst, H., Blanco-Sequeiros, A., Herlevi, A., 1998. Relation between underwater irradiance and quantum irradiance in dependence on water transparency at different depths in the water bodies. J. Geophys. Res. 103, 7749-7752, https://doi.org/10.1029/97JC03645.
  • [42] Rintala, J.-M., Piiparinen, J., Blomster, J., Majaneva, M., Müller, S., Uusikivi, J., Autio, R., 2014. Fast direct melting of brackish sea-ice samples results in biologically more accurate results than slow buffered melting. Polar Biol. 1811-1822, https://doi.org/10.1007/s00300-014-1563-1.
  • [43] Shokr, M., Sinha, N (Eds.), 2015. Laboratory Techniques for Revealing the Structure of Polycrystalline Ice. Sea Ice: Physics and Remote Sensing. Geophys. Monogr. 209, AGU. John Wiley & Sons, Hoboken, 231-269.
  • [44] Simis, S. G. H., Olsson, J., 2013. Unattended processing of shipborne hyperspectral reflectance measurements. Remote Sens. Environ. 135, 202-212, https://doi.org/10.1016/j.rse.2013.04.001.
  • [45] Simon, A., Shanmugam, P., 2016. Estimation of the spectral diffuse attenuation coefficient of downwelling irradiance in inland and coastal waters from hyperspectral remote sensing data: Validation with experimental data. Int. J. Appl. Earth Obs. Geoinf. 49, 117-125, https://doi.org/10.1016/j.jag.2016.02.003.
  • [46] Strickland, J. D. H., Parsons, T. R., 1972. A practical handbook of seawater analysis, 2nd edn. Fisher. Res. Board Canada, Ottawa, Canada, 293 pp., https://doi.org/10.1002/iroh.19700550118.
  • [47] Uusikivi, J., Granskog, M. A., Sonninen, E., 2011. Meteoric ice contribution and influence of weather on landfast ice growth in the Gulf of Finland. Baltic Sea. Ann. Glaciol. 52, 91-96, https://doi.org/10.3189/172756411795931796.
  • [48] Uusikivi, J., Vähätalo, A. V, Granskog, M.a., Sommaruga, R., 2010. Contribution of mycosporine-like amino acids and colored dissolved and particulate matter to sea ice optical properties and ultraviolet attenuation. Limnol. Oceanogr. 55, 703-713, https://doi.org/10.4319/lo.2010.55.2.0703.
  • [49] Vogt, J., Soille, P., De Jager, A., Rimaviči\=ut\.e, E., Mehl, W., Foisneau, S., Bódis, K., Dusart, J., Paracchini, M. L., Haastrup, P., Bamps, C., 2007. A pan-European River and Catchment Database. Rep. EUR 22920 En. [JRC Ref. Rep.], CCM, IES, JCR EU. Office for Official Publ. EU (OPOCE), Luxembourg, 124 pp., https://doi.org/10.2788/35907.
  • [50] Wang, H., Nan, L., Han, J., Chen, Y., Huang, H., 2019. Long-term measurement of solar irradiance above, within, and under sea ice in polar environments by using fiber optic spectrometry. J. Atmos. Ocean. Technol. 36, 1773-1787, https://doi.org/10.1175/JTECH-D-19-0086.1.
  • [51] Weeks, W. F., Ackley, S. F., 1986. The Growth, Structure, and Properties of Sea Ice. In: Untersteiner, N. (Ed.), The Geophysics of Sea Ice. Springer, Boston, 9-164.
  • [52] Weeks, W. F., Hibler, W. D., 2010. Appendix E: Thin sections. On Sea Ice. Univ. Alaska Press, 566-570.
  • [53] Weeks, W F, Gow, A, Kosloff, P., Digby-Argus, S., 1990. The internal structure, composition and properties of brackish ice from the Bay of Bothnia. In: Ackley, S. F., Weeks, Wilford F. (Eds.), Sea Ice Properties and Processes: Proc. W. F. Weeks Sea Ice Symp., CRREL Monogr., 5-15.
  • [54] Zibordi, G., Darecki, M., 2006. Immersion factors for the RAMSES series of hyper-spectral underwater radiometers. J. Opt. A Pure Appl. Opt. 8, 252-258, https://doi.org/10.1088/1464-4258/8/3/005.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1e854651-c869-4656-83b1-214f61d22446
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.