PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental validation of an FEM model based on lifting theory applied to propeller design software

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
PL
In the process of designing a marine propeller, hydroelasticity effects are neglected in most cases, due to the negligible influence of the blade’s deformation on its hydrodynamic characteristics. However, there are cases where the impact of hydroelasticity is crucial, for example in the case of high skew-back propellers or heavy-loaded composite propellers. Furthermore, the importance of composite propellers is growing due to their wide range of application, for instance in naval ships and unmanned vehicles. Although structural models and two-way fluid-structure interactions are implemented in most commercial CFD solvers, their relevance to the design process is severely limited due to the high computational cost for a single iteration. An effective solution would therefore be to implement a two-way fluidstructure interaction model in the lifting surface software, which is commonly accepted as a design tool due to its relatively low computational time and its applicability to multi-criteria optimisation. This paper presents the results of hydrodynamic analyses of an elastic propeller carried out using in-house software based on the lifting surface flow model, and extended with the FEM model for the blade structure. The results are compared with experimental measurements and computational analyses with the commercial RANS solver STAR-CCM+.
Rocznik
Tom
Strony
67--76
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
  • Polish Naval Academy, Gdynia, Poland
  • Maritime Advanced Research Centre(CTO S.A.), Gdansk, Poland
  • Maritime Advanced Research Centre(CTO S.A.), Gdansk, Poland
  • Polish Naval Academy, Gdynia, Poland
  • Polish Naval Academy, Gdynia, Poland
Bibliografia
  • 1. Mouritz A P, Gellert E, Burchill P, Challis K. Review of advanced composite structures for naval ships and submarines. Composite Structures 2001, 53(1):21–42, https://doi.org/10.1016/S0263-8223(00)00175-6.
  • 2. Paul A, Schmidt A, Wolf E. Acoustically optimized propeller made from composite materials. ThyssenKrupp Techforum 2011, 1:58–63.
  • 3. Pinninti R R, Raj S. Fabrication and analysis of composite marine propeller. International Journal of Engineering Technology, Management and Applied Sciences 2015, 3:238–45.
  • 4. Suh S-B, Park I-R. Numerical simulation of the flow around the SUBOFF submarine model using a DES method. Journal of the Society of Naval Architects of Korea 2021, 58:73–83, https://doi.org/10.3744/SNAK.2021.58.2.073.
  • 5. Lee H, Song M-C, Suh J-C, Chang B-J. Hydro-elastic analysis of marine propellers based on a BEM-FEM coupled FSI algorithm. International Journal of Naval Architecture and Ocean Engineering 2014, 6(3):562–577, https://doi.org/10.2478/IJNAOE-2013-0198.
  • 6. Maung P T, Prusty B G, Phillips A W, St John N A. Curved fibre path optimisation for improved shape adaptive composite propeller blade design. Composite Structures 2021, 255:112961, https://doi.org/10.1016/j.compstruct.2020.112961.
  • 7. Szantyr J A. A method for analysis of cavitating marine propellers in non-uniform flow. International Shipbuilding Progress 1994, 41(427):223–241, doi: 10.3233/ISP-1994-4142703.
  • 8. Maljaars P, Kaminski M. Hydro-elastic analysis of flexible propellers: An overview. Fourth International Symposium on Marine Propulsors 2015, 146–58.
  • 9. Y-B, Wang Z-K, G-C. Tsai G-C. Two-way fluid-structure interaction simulation of a micro horizontal axis wind turbine. International Journal of Engineering and Technology Innovation 2015, 5:33–44.
  • 10. Langer U, Yang H. Numerical simulation of fluid–structure interaction problems with hyperelastic models: A monolithic approach. Mathematics and Computers in Simulation 2018, 145:186–208, doi: https://doi.org/10.1016/j.matcom.2016.07.008.
  • 11. Young Y L. Fluid–structure interaction analysis of flexible composite marine propellers. Journal of Fluids and Structures 2008, 24(6):799–818, doi: https://doi.org/10.1016/j.jfluidstructs.2007.12.010.
  • 12. Jarzyna H, Koronowicz T, Szantyr J. Design of marine propellers: Selected problems. Polish Academy of Science; 1994.
  • 13. Szturomski B. Inżynierskie zastosowanie MES w problemach mechaniki ciała stałego na przykładzie programu ABAQUS [Engineering application of FEM in problems of solid mechanics on the example of the ABAQUS program - available in Polish]. Gdynia: Wydawnictwo Akademickie AMW; 2013.
  • 14. Gokhale N, Deshpande S, Bedekar S, Thite A. Practical finite element analysis. Maharastra, India; 2008.
  • 15. Guangnian L., Chen Q., Liu Y.. Experimental Study on Dynamic Structure of Propeller Tip Vortex. Polish Maritime Research, 2020;27(2): 11-18. https://doi.org/10.2478/pomr-2020-0022.
  • 16. Lou B., Cui H.. Fluid–Structure Interaction Vibration Experiments and Numerical Verification of a Real Marine Propeller, Polish Maritime Research, 2021;28(3): 61-75. https://doi.org/10.2478/pomr-2021-0034.
  • 17. Leshchev, V., Maslov, I., Palagin, O., Naydonov, A., Transfer function for a controllable pitch propeller with added water mass, Polish Maritime Research 4 (120) 2023 Vol. 30; pp. 74-80, 10.2478/pomr-2023-006.
  • 18. Quang P., Van Hung P., Cong N., Tung T.. Effects of Rudder and Blade Pitch on Hydrodynamic Performance of Marine Propeller Using CFD, Polish Maritime Research, 2022;29(2): 55-63. https://doi.org/10.2478/pomr-2022-0017.
  • 19. Zinati A., Ketabdari M., Zeraatgar H.. Effects of Propeller Fouling on the Hydrodynamic Performance of a Marine Propeller. Polish Maritime Research 2023;30(4): 61-73. https://doi.org/10.2478/pomr-2023-0059.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1e82342b-8a3b-492c-b2cd-206e5a5c0ebe
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.