Identyfikatory
Warianty tytułu
Funkcjonalizacja wiskozy za pomocą kombinacji chitozan/BTCA i zastosowania mikrofal
Języki publikacji
Abstrakty
Improved hygiene and health care standards have a great impact on the development of hygiene and health care products. For this purpose, viscose is a very popular substrate. One of the most promising anti-microbial compounds of modern times is chitosan. The anti-microbial action of this polysaccharide depends on the amino group amount, which is crucial for ensuring the effectiveness of anti-microbial treated material. In textile finishing, 1,2,3,4–buthanetetracarboxylic acid (BTCA) is usually used as a non-formaldehyde crease-resistant reagent. But, on the other hand, the negatively charged carboxyl groups of BTCA can be explored as additional binding sites for positively-charged protonated amino groups of chitosan. When using microwaves, polar materials (e.g. chitosan) orient and reorient themselves according to the direction of the electro-magnetic field, which means that chitosan chain-bending may have taken place during the drying with microwaves. This could result in a higher specific surface of the chitosan and, consequently, in a higher proportion of available amino groups. It is concluded that the combination chitosan/BTCA supported by microwaves drying represents an ideal combination to increase the proportion of available amino groups.
Podwyższanie standardów dotyczących zdrowia ma duży wpływ na rozwój produktów higienicznych i medycznych. Dlatego wiskoza jest bardzo popularnym substratem. Dla celów uzyskania właściwości anty-mikrobowych, bardzo popularnym związkiem jest chitozan. Aktywność tego polisacharydu jest uzależniona od ilości grup aminowych. Podczas wykańczania materiałów włókienniczych BTCA jest stosowany jako niezawierający formaldehydu środek zmniejszający gniotliwość. Z drugiej strony, ujemnie naładowane grupy karboksylowe BTCA mogą być wykorzystane jako dodatkowe łączniki dla dodatnio naładowanych protonowanych grup aminowych chitozanu. Pod wpływem mikrofal materiały polarne (chitozan) orientują się i reorientują zgodnie z kierunkiem pola elektromagnetycznego, co oznacza, że podczas suszenia za pomocą mikrofal może dojść do zginania łańcuchów chitozanu. Może to powodować większą względną powierzchnię chitozanu i konsekwentnie wyższą proporcję dostępnych grup aminowych.
Czasopismo
Rocznik
Strony
24--29
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
autor
- Institute of Engineering Materials and Design, Faculty of Mechanical Engineering, University of Maribor, Maribor, Slovenia
autor
- Institute of Engineering Materials and Design, Faculty of Mechanical Engineering, University of Maribor, Maribor, Slovenia
Bibliografia
- 1. Kreže T, Stana-Kleinschek K, Ribitsch V. The sorption behaviour of cellulose fibres. Lenzinger Berichte 2001; 80: 28- 33.
- 2. KrässigCellulose HA. Structure, accessibility and reactivity. Gordon and Breach Publishers, 5301 Tacony Street, Philadelphia,1993.
- 3. Anand SC, Kennedy JF, Miraftab M, Rajendran S. Medical Textiles and biomaterials for healthcare. Cambridge England, Woodhead Publishing Ltd., CRC Press; 2006.
- 4. Ravi Kumar MNV. A review of chitin and chitosan applications. Reactive & Functional Polymers 2000; 46: 1-27.
- 5. Severiaon D. Polymeric Biomaterials. Second Edition, New York: Marcel Dekker; 2002.
- 6. Jung BO, Kim CH, Choi KS, Lee YM, Kim JJ. Preparation of amphiphilic chitosan and their antimicrobial activities. J. App. Polym. Sci. 1999; 72/13: 1713– 1719.
- 7. Laemmermann D. New Possibilities for Non-Formaldehyde Finishing of Cellulosic Fibres. Melliand Textilberichte 1992; 3: 274-279.
- 8. Welch CM, Peters JG. Mixed Polycarboxylic Acids and Mixed Catalyst in Formaldehyde-Free Durable Press Finishing. Textile Chemist and Colorist 1997; 29/3: 22-27.
- 9. Welch CM. Tetracarboxylic Acids As Formaldehyde Free Durable Press Finishing Agents. Textile Research Journal 1998; 58: 480-486.
- 10. Welch CM. Formaldehyde-Free DP Finishing with Polycarboxylic Acids. American Dyestuff Reporter 1994; 83: 19-26.
- 11. Strnad S, Šauperl O, Fras Zemljič L, Jazbec A. Chitosan – universally applicable polymer. Tekstilec 2007; 50/10-12: 243-261.
- 12. Strnad S, Šauperl O, Jazbec A, StanaKleinschek K. Influence of chemical modification on sorption and mechanical properties of cotton fibers treated with chitosan. Textile Research Journal 2008; 78/ 5: 390-398.
- 13. Wang W, Xu D. Viscosity and flow properties of concentrated solutions of chitosan with different degrees of deacetylation. International Journal of Biological Macromolecule 1994: 149-152.
- 14. Khokhlova MA, Chaschin IS, Grigorev TE, Gallyamov MO. Chitosan macromolecules on a substrate: deposition from solutions in sc CO2 and reorganisation in vapours. Macromolecular symposia 2010; 296: 531-540.
- 15. Kut D, Güneţođlu C, Orhan M. Creaseresistant Finish of Linen/Viscose Blend Fabrics. Fibres & Textiles in Eastern Europe 2010; 18, 6 (83): 91-93.
- 16. Fras-Zemljič L, Šauperl O, But I, Zabret A, Lušicky M. Viscose material functionalized by chitosan as a potential treatment in gynaecology. Textile Research Journal 2011; 81/11: 1183-1190.
- 17. Šauperl O, Stana-Kleinschek K, Vončina B, Sfiligoj-Smole M, Majcen Le Marechal A. Application of spectrophotometric methods in assessing the influence of alkaline treatment on the degree of crosslinking of cotton cellulose with BTCA. Croatica Chemica Acta 2003; 76/4: 293-298.
- 18. Šauperl O, Fras L, Stana-Kleinschek K, Sfiligoj-Smole M. Metilen plavo i kompleksometrijska titracija kao metode određivanja utjecaja efekta mercerizacije na udio karboksilnih skupina pamučne celuloze umrežene 1,2,3,4 butantetrakarboksilnom kiselinom (BTCA). Tekstil 2004; 53 /6: 289-294.
- 19. Klemm D, Phillip B, Heinze U, Wagenknecht W. Comprehensive Cellulose Chemistry, Volume I, Fundamentals and Analytical Methods. Wiley-VCH Verlag GmbH, Weinheim, 1998.
- 20. Browning BL. Methods of wood chemistry, Volume II, New York, 1967.
- 21. Fras-Zemljič L, Strnad S, Šauperl O, Stana-Kleinschek K. Characterization of amino groups for cotton fibers coated with chitosan. Textile Research Journal 2009; 79/3: 219-226.
- 22. Šauperl O, Stana-Kleinschek K. Differences between cotton and viscose fibers crosslinked with BTCA. Textile Research Journal 2010; 80/4: 383-392.
- 23. Hyung MC. Nonphosphorus Catalysts for Formaldehyde-Free DP Finishing of Cotton with Polycarboxylic Acids. Textile Research Journal 1993; 63/11: 650-657.
- 24. Šauperl O, Stana-Kleinschek K, Ribitsch V. Cotton cellulose 1, 2, 3, 4 buthanetetracarboxylic acid (BTCA) crosslinking monitored by some physical-chemical methods. Textile Research Journal 2009; 79/9: 780-791.
- 25. Yang CQ, Qilie W. Formation of Cyclic Anhydride Intermediates and Esterification of Cotton Cellulose by Multifunctional Carboxyl Acids: An IR Study. Textile Research Journal 1996; 66/9: 595-603.
- 26. Hebeish A, Abdel-Mohdy FA, Moustafa MG, Fouda Z, Elsaid S, Essam GH, Tammam, Ehab A. Drees, Green synthesis of easycare and antimicrobial cotton fabrics. Carbohydrate Polymers 2011; 86/4: 1684-1691.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1e7c2501-f1b3-4d07-baeb-8ba2dd12abc7