PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Solution approaches to differential equations of mechanical system dynamics: a case study of car suspension system

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Solution of a dynamic system is commonly demanding when analytical approaches are used. In order to solve numerically, describing the motion dynamics using differential equations is becoming indispensable. In this article, Newton’s second law of motion is used to derive the equation of motion the governing equation of the dynamic system. A quarter model of the suspension system of a car is used as a case and sinusoidal road profile input was considered for modeling. The state space representation was used to reduce the second order differential equation of the dynamic system of suspension model to the first order differential equation. Among the available numerical methods to solve differential equations, Euler method has been employed and the differential equation is coded MATLAB. The numerical result of the second degree of freedom, quarter suspension system demonstrated that the approach of using numerical solution to a differential equation of dynamic system is suitable to easily simulate and visualize the system performance.
Twórcy
  • School of Mechanical Engineering, Jimma University, 378 Jimma, Ethiopia
autor
  • Faculty of Science and Technology, University of Stavanger, N-4036 Stavanger, Norway
Bibliografia
  • 1. Allen, R., Magdaleno, R., Rosenthal, T., Klyde, D. et al., Tire modeling requirements for vehicle dy-namics simulation, SAE Technical Paper 950312, 1995, https://doi.org/10.4271/950312.
  • 2. Alleyen, A. and Hedrick, J. K., Nonlinear adaptive control of active suspensions, IEEE Trans. Control Systems, 3, 1995.
  • 3. Baumal, A.E. McPhee, J.J. and Calamai, P.H., Application of genetic algorithms to the design optimization of an active vehicle suspension system, Computer Methods in Applied Mechanics and En-gineering, 163 (1–4), 1998, 87-94.
  • 4. Boelter, R. and Janocha, H., Performance of long-stroke and low-stroke MR fluid damper. In: Proceedings of SPIE 3327, Smart Structures and Materials 1998: doi: 10.1117/12.310693.
  • 5. Esfandiari, R.S., Modeling and analysis of dynamic system, 2nd ed. USA, NY, CRC press, 2014.
  • 6. Goga, V. And Klucik, M., Optimization of vehicle suspension parameters with use of evolutionary computation, Proceedia Engineering, 48, 2012, 174-179: doi.org/10.1016/j.proeng.2012.09.502.
  • 7. Jayachandran, R. and Krishnapillai, S. Modeling and optimization of passive and semiactive suspension systems for passenger cars to improve ride comfort and isolate engine vibration, Journal of Vibration and Control, 19(10), 2012, 1471–1479: doi: 10.1177/1077546312445199.
  • 8. Karnopp, D.C., Margolis, D.L. and Rosenberg, R.C., System dynamics: modeling, simulation, and control of mechatronic systems, 5th ed., 2012, John Wiley & Sons, NJ.
  • 9. Khajavi, M.N., Notghi, B. And Paygane, G., A multi objective optimization approach to optimize vehicle ride and handling characteristics, International Scholarly and Scientific Research & Innova-tion., 4 (2), 2010, 502-506.
  • 10. Kortüm, W. DLR., Review of multibody computer codes for vehicle system dynamics, Vehicle System Dynamics, 22(1), 1993, 3 – 31.
  • 11. Mitra, A.C., Desaib, G.J., Patwardhan, S.R., Shirke, P.H., Waseem M.H. Kurne Nilotpal Banerjee, Optimization of Passive Vehicle Suspension System by Genetic Algorithm, Procedia Engineering, 144, 2016, 1158-1166. https://doi.org/10.1016/ j.proeng.2016.05.087.
  • 12. Rao, G.V., Rao, T.R.M., Rao, K.S. and Purushottam,A., Analysis of passive and semiactive controlled suspension systems for ride comfort in an omnibus passing over a speed bump, International Journal of Research and Reviews in Applied Science, 5, 2010.
  • 13. Sharp, R. S. and Hassan, A. S., The relative performance capabilities of passive, active and semiactive car suspensions, Proceedings of Institution of Mechanical Engineers 20(D3), 1986, 219-228.
  • 14. Sharp, R.S. and Crolla, D.A., Road vehicle suspension system design - a review, Vehicle System Dynamics, 16(3), 1987, 167 – 192.
  • 15. Shirahatti, A., Prasad, P.S.S. Panzade, P. and Kulkarni, M.M., Optimal design of passenger car suspension for ride and road holding, Journal of Brazilian Society of Mechanical Science and En-gineering, vol. 30(1). http://dx.doi.org/10.1590/ S1678-58782008000100010.
  • 16. Spencer, B.F., Dyke, D.J., Sain, M.K. and Carlson, J,D., Phenomenological model of a magnetorheological damper. Journal of Engineering Mechanics, 123(3), 1997, 230–238.
  • 17. Thohura, S. and Rahman, A., Numerical approach for solving stiff differential equations: A comparative study, Global Journal of Science Frontier Research Mathematics and Decision Sciences, 13, 2013.
  • 18. Thoresson, M.J., Uys, P.E., Els, P.S. and Snyman, J.A., Efficient optimisation of a vehicle suspension system using a gradient based approximation method, Part 1: Mathematical modelling. Mathematical and Computer Modelling, 50, 2009, 1421 – 1436.
  • 19. Verros, G., Natisiavas, S. and Papadimitriou, C., Design optimization of quartercar models with passive and semi-active suspensions under random road excitation, Journal of Vibration and Control, 11, 2005, 581–606.
  • 20. Wallaschek, J., Dynamics of non-linear automobile shock-absorbers, International Journal of NonLinear Mechanics 25, 1990, 299-308.
  • 21. Yao, G.Z., Yap, F.F., Chen, G., Li, W.H. and Yeo, S.H., MR damper and its application for semiactive control of vehicle suspension system, Mechatronics, 12, 2002, 963–973.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1e77d0eb-fe52-4403-be91-a1cc6e20b9e3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.