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Abstract. We consider the problem of justifying vertex weights of a tree under uncertain
costs so that a prespecified vertex become optimal and the total cost should be optimal
in the uncertainty scenario. We propose a model which delivers the information about the
optimal cost which respect to each confidence level α ∈ [0, 1]. To obtain this goal, we first
define an uncertain variable with respect to the minimum cost in each confidence level. If all
costs are independently linear distributed, we present the inverse distribution function of this
uncertain variable in O(n2 logn) time, where n is the number of vertices in the tree.
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1. INTRODUCTION

Inverse location theory has become an interesting topic in Operations Research and has
been investigated mainly in the two approaches, the inverse median and the inverse
center problems. For the inverse 1-median problem on trees, Burkard et al. [6] and
Galavii [9] modeled the problem as a linear knapsack problem and thus solved this
problem in linear time. Burkard et al. [7] investigated the inverse 1-median problem
on a cycle and solved the problem in O(n2) time by exploring the concavity of linear
constraints. The inverse p-median problem on general graphs is NP -hard, see Bonab
et al. [5]. However, the inverse 2-median problem on a tree can be solved in polynomial
time and this problem can be solved in linear time if the underlying tree is a star.
Concerning inverse 1-center problems, Cai et al. [8] were the first who showed the
NP -hardness of the inverse 1-center problem whereas the classical 1-center problem is
solvable in polynomial time. Therefore, it is interesting to consider some cases where
the inverse 1-center problem can be solved in polynomial time. The inverse 1-center
problem on unweighted trees with variable edge lengths was investigated in depth and
efficiently solved, see Alizadeh and Burkard [1–3]. Nguyen and Chassein [15] considered
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a generalization of the inverse 1-center problem on trees, the problem on cactus graphs,
and showed the NP -completeness. Moreover, the inverse 1-center problem on weighted
trees was studied and solved under various norms, see [17,18]. Nguyen and Anh [16]
further solved the inverse 1-center problem with variable vertex weights in O(n2) time.

While most problems considered fixed parameters, real-life scenarios lead us to
investigate the problem with uncertainty. For example, the cost of modification may
depend on the condition of the road, the weather, or the time of a day. Therefore,
a nondeterministic model, like probability or fuzzy set theory, should be taken into
account. In the situation where there exists no sample to estimate the probability
distribution of a given nondeterministic variable, we have to invite experts to evaluate
the belief degree such that the event occurs. Liu [13, 14] has developed an uncertainty
theory to deal with the belief degree which has been recently applied to model many
nondeterministic problems. Gao [10] gave the concept of uncertain α-shortest path
on graphs with uncertain edge lengths and pointed out that the uncertain α-shortest
path is equivalent to the shortest path in a corresponding deterministic environment.
Then Zhou et al. [19] investigated the inverse shortest path problem on uncertain
graphs. They proposed a crisp model corresponding to some given confidence levels
and proved that the model is equivalent to a linear program.

Although uncertainty theory plays an important role in real life applications and
the inverse location problem has been intensively studied in operations research,
according to the best of our knowledge the connection between these two topics has
not been studied so far. We consider in this paper the inverse 1-median problem
on a tree under uncertain cost coefficients, i.e., the cost will be evaluated by the
experts. The paper is organized as follows. Section 2 recalls preliminaries concerning
the inverse 1-median problem on trees and uncertainty theory. We investigate in
Section 3 a combination of these two theories. In other words, we first construct an
uncertain variable representing the minimum cost of the inverse 1-median problem on
a tree with respect to each confidence level. Then we develop an O(n2 logn) algorithm
to find the inverse distribution function of the uncertain variable.

2. PRELIMINARIES

In this section we first focus on the concept of an inverse 1-median problem on trees
with variable vertex weights, then we recall the definition of uncertain variables in
order to connect these two theories.

2.1. INVERSE 1-MEDIAN PROBLEM ON TREE (INVT)

Let T = (V,E) be a tree with n vertices. Each edge e ∈ E has a positive length and each
vertex v ∈ V is associated with a nonnegative weight wv. The distance between two
vertices u and v is the length of the shortest path connecting these two vertices and is
denoted by d(u, v). The 1-median function at a vertex v is defined as

∑
v′∈V wv′d(v, v′).

A vertex v0 is a 1-median of T if
∑
v′∈V wv′d(v0, v′) ≤∑v′∈V wv′d(v, v′) for all vertices

v ∈ V .
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In what follows, we restate the inverse 1-median model proposed by Burkard et
al. [6] and Galavii [9]. Given a tree T = (V,E) and a prespecified vertex v∗. The
weight of each vertex v can be increased or decreased by an amount pv or qv, i.e., the
new weight of v is defined as w̃v := wv + pv − qv. Assume that the modified weights
are non-negative and increasing (decreasing) one unit weight of v costs c+e (c−e ), the
inverse 1-median problem on tree is formulated as follows.

— The prespecified vertex v∗ becomes a 1-median of the modified tree, i.e.,
∑

v′∈V
w̃v′d(v∗, v′) ≤

∑

v′∈V
w̃v′d(v, v′)

for all v ∈ V .
— The cost

∑
v∈V (c+v pv + c−v qv) is minimized.

— The modifications are limited within their bounds, i.e., 0 ≤ pv ≤ p̄v and
0 ≤ qv ≤ q̄v.

Solution methods of (InvT) are based on an optimality criterion. Let T1, T2,. . . , Tk
be the subtrees induced by deleting all edges incident to v∗ from T , where k is the
degree of v∗. Denote by W :=

∑
v∈T wv and Wi :=

∑
v∈Ti

wv for i = 1, . . . , k, then
we get the following theorem.

Theorem 2.1 (Median Criterion, see Goldman [11] and Hua [12]). The vertex v∗ is
a 1-median of T if and only if Wi ≤ W

2 for all i = 1, . . . , k.

It is easy to see that the conditions for a vertex to be a 1-median of T does not
depend on the edge lengths. If v∗ is not a 1-median of T , there exists exactly one
subtree, say Ti0 , that violates the optimality criterion in Theorem 2.1. Then there exists
an optimal solution such that the vertex weights in Ti0(T\Ti0) is reduced(increased).
Therefore, we set xv := pv and x̄v := p̄v (xv := qv and x̄v := q̄v) if v ∈ Ti0 (v ∈ T\Ti0).
We say that the weight of a vertex v in Ti0 (T\Ti0) is modified by xv if its weight is
reduced (increased) by an amount xv. After renumbering the vertex and making some
elementary computations, we can formulate the inverse 1-median problem on T as
follows:

min
n∑

i=1
cixi

s.t.
n∑

i=1
xi = 2D

0 ≤ xi ≤ x̄i for all i = 1, . . . , n

(2.1)

Here, D := Wi0 − W
2 is the optimality gap.

The inverse 1-median problem on trees has been solved efficiently in linear time by
applying the algorithm of Balas and Zemel [4], see Burkard et al. [6] and Galavii [9].
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2.2. UNCERTAIN VARIABLE

This subsection recall the concepts of uncertain variables which have been studied by
Liu [13]. While the probability theory is applicable when samples are available, the
uncertainty theory concerns the belief degree, i.e., the sample size is not large enough
or no sample is available.

Let Γ be a nonempty set, and let L be a σ-algebra over Γ. Each element Λ ∈ L
is called an event. In order to present an axiomatic definition of uncertain measure, it
is necessary to assign to each event Λ a numberM{Λ} which indicates the level that
Λ will occur. In order to ensure that the number M{Λ} has certain mathematical
properties, we have the following four axioms:
Axiom 1. (Normality)M{Γ} = 1.
Axiom 2. (Monotonicity)M{Λ1} ≤ M{Λ2} whenever Λ1 ⊂ Λ2.
Axiom 3. (Self-Duality)M{Λ}+M{Λc} = 1 for any event Λ.
Axiom 4. (Countable Subadditivity) For every countable sequence of events {Λi},
we have

M
{ n⋃

i=1
Λi
}
≤

n∑

i=1
M{Λi}.

The triplet (Γ,L,M) is called an uncertainty space. Moreover, an uncertain variable
ξ is a measurable function from an uncertainty space to the set of real numbers.
The distribution function of an uncertain variable ξ is defined as follows.
Definition 2.2. The uncertainty distribution of an uncertain variable ξ is, by defini-
tion, a function

Φ(x) :=M{ξ ≤ x}.
for x ∈ R.

To illustrate the distribution function of an uncertain variable, let us consider the
following example.
Example 2.3. An uncertain variable ξ is called linear, or ξ ∼ L(a, b), if it has a linear
uncertainty distribution

Φ(x) =





0, if x ≤ a,
(x− a)/(b− a), if a ≤ x ≤ b,
1, if x ≥ b.

The inverse uncertainty distribution of an uncertain variable ξ is defined as Φ−1(α).
An uncertainty distribution Φ is regular if Φ−1(α) exists and is unique for each
α ∈ (0, 1). We can observe that if ξ ∼ L(a, b), then its distribution function is regular
and Φ−1(α) = (1− α)a+ αb for α ∈ (0, 1).
Definition 2.4. The uncertain variables ξ1, ξ2, . . . , ξn are said to be independent if

M
{ m⋃

i=1
(ξi ∈ Bi)

}
=

m
min
i=1
M{ξi ∈ Bi}

for any Borel sets B1, B2, . . . , Bm of real numbers.
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We get the following rule that states the inverse distribution function of the
combination of independent variables.

Proposition 2.5. Let ξ1, ξ2, . . . , ξn be independent uncertain variables with reg-
ular uncertainty distributions Φ1,Φ2, . . . ,Φm. If the function f(x1, x2, . . . , xm) is
strictly increasing with respect to x1, . . . , xk and strictly decreasing with respect to
xk+1, xk+2 . . . , xm, then

ξ = f(ξ1, ξ2, . . . , ξm)

is an uncertain variable with the inverse uncertainty distribution

Ψ−1(α) = f(Φ−1
1 (α), . . . ,Φ−1

k (α),Φ−1
k+1(1− α), . . . ,Φ−1

m (1− α)).

3. THE INVERSE 1-MEDIAN PROBLEM
ON TREES UNDER UNCERTAIN COSTS (IMUC)

In this section we assume that the cost cooefficients of (InvT), viz. ci for i = 1, . . . , n,
are independent uncertain variables. For simplicity, we denote by ξi the uncertain
variable with respect to cost ci for i = 1, . . . , n. Then one can write the cost function
in (2.1) as

∑n
i=1 ξixi. One model related to the inverse 1-median problem under

uncertainty is the crisp model

minE
( n∑

i=1
ξixi

)

s.t.
n∑

i=1
xi = 2D,

0 ≤ xi ≤ x̄i for all i = 1, . . . , n.

(3.1)

where D is defined in (2.1).
However, the crisp model (3.1) delivers only the expectation of the cost function

but not the information about the objective value corresponding to each confidence
level. Hence, we aim to construct in this paper an uncertain variable corresponding to
the minimum cost in each confidence level. Then we consider the solution with respect
to the expectation of this uncertain variable as the optimal solution of the model.

Denote by ∆ the set of feasible solutions of (3.1), i.e.,

∆ :=
{
x = (x1, x2, . . . , xn) :

n∑

i=1
xi = 2D, 0 ≤ xi ≤ x̄i for all i = 1, . . . , n

}
.

Concerning each level of confidence α, we can define a corresponding optimal value
Cα as follows.
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Definition 3.1. Cα is the minimum cost of (IMUC) under the confidence level α, i.e.,

Cα := min
{
C |M

{ n∑

i=1
ξixi ≤ C

}
≥ α and (x1, x2, . . . , xn) ∈ ∆

}
.

Assume that Φi is the distribution function of ξi for i = 1, . . . , n. For a feasible
solution x = (x1, x2, . . . , xn) ∈ ∆, the distribution function of

∑n
i=1 ξixi is Ψx :=∑n

i=1 xiΦi. As it is noted that Cα := min
x∈∆

Ψ−1
x (α) and by Proposition 2.5, we can

rewrite

Cα := min
x∈∆

n∑

i=1
xiΦ−1

i (α).

Let us further assume from here on that, the uncertain variable ξi has a linear
distribution, i.e., ξi ∼ L(ai, bi), for i = 1, . . . , n. To find Cα, we solve the inverse
1-median problem on T with a condifence level α. Precisely, we first replace uncertain
variables by deterministic costs, say ci := (1− α)ai + αbi for i = 1, . . . , n. Then we
solve the corresponding inverse 1-median problem on T . It can be done in linear time
by the algorithm of Balas and Zemel [4].

Now we construct an uncertain variable ϕ corresponding to the minimum cost of
(IMUC) with each confidence level α ∈ [0, 1], i.e., {Cα}α∈[0,1], as follows.

M{ϕ ≤ x} :=





0, if x ≤ C0,
α, if x = Cα ∈ [C0, C1],
1, if x ≥ C1.

Denote the inverse distribution function of ϕ by Θ. We get the following property.

Lemma 3.2. If ξi are independent and linearly distributed uncertain variables for
i = 1, . . . , n, then Θ is a piecewise linear function with at most O(n2) breakpoints.

Proof. If ξi ∼ L(ai, bi) for all i = 1, . . . , n, then

Θ(α) = Cα := min
{ n∑

i=1
(ai + α(bi − ai))xi : (x1, x2, . . . , xn) ∈ ∆

}

for α ∈ [0, 1].
In order to find Θ(α) for α ∈ [0, 1] we have to solve the corresponding continuous

knapsack problem. Moreover, in a continuous knapsack problem we use the items with
smaller costs first until the budget constraint is fulfilled. Therefore, the function Θ is
piecewise-linear with breakpoints being the values of α in which the ordering of cost
values changes. As there are O(n2) possible changes of the ordering of cost coefficients,
the number of breakpoints is at most O(n2).

We further get the following result.

Proposition 3.3. There exists a confidence level α∗ ∈ [0, 1] such that E[ϕ] = Cα∗ .
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Proof. As the inverse distribution function Θ is a continuous piecewise linear function.
The mean value theorem ensures that there exists α∗ so that

E[ϕ] =

1∫

0
Θ(α)dα = Θ(α∗) =: Cα∗ .

Definition 3.4. An optimal solution of the inverse 1-median problem on T under the
confidence level α∗ is called the optimal solution of (IMUC).

It is noted that the optimal solution of (IMUC) can be easily found in linear time
if we know exactly the presentation of Θ(α) for α ∈ [0, 1].

Next we aim to find the inverse distribution function Θ in order to deliver the
information of the minimum cost with respect to each confidence level α ∈ [0, 1].
We first find the breakpoints of Θ in O(n2) time by considering the intersection in
(0, 1) of these affine linear functions ai + α(bi − ai) for i = 1, . . . , n. Then we sort the
breakpoints increasingly in O(n2 logn) time and get a sequence

0 < α1 < . . . < αk < 1.

We start with finding Θ(0) in linear time and denote by (x(0)
1 , x

(0)
2 , . . . , x

(0)
n ) the

corresponding optimal solution. For α ∈ [0, α1], the optimal cost is Θ(α) :=
∑n
i=1(ai +

α(bi − ai))x(0)
i with the corresponding minimizer (x(0)

1 , x
(0)
2 , . . . , x

(0)
n ). In order to find

the minimizer (x(1)
1 , x

(1)
2 , . . . , x

(1)
n ) of Θ(α) for α ∈ [α1, α2], we focus on the affine

linear functions which change the ordering at α1. Denote by S1 the set of index i
such that ai + α(bi − ai)’s change the ordering at α1. Take the uncertain variables
corresponding to these affine linear functions and solve

min
∑

i∈S1

(ai + (α1 + ε)(bi − ai))xi,

s.t.
∑

i∈S1

xi =
∑

i∈S1

x
(0)
i ,

0 ≤ xi ≤ x̄i for all i ∈ S1,

(3.2)

for a sufficently small positive number ε, ε < α2 − α1.
The minimizer x(1) of Θ(α) for α ∈ [α1, α2] is identified as follows:

– if j 6∈ S1, x(1)
j = x

(0)
j ,

– (x(1)
j )j∈S1 is the minimizer of (3.2).

To find Θ(α), α ∈ [α1, α2], and so on, we apply the similar procedure. In iteration
i, it takes O(Si) time to update the corresponding optimal solution. Therefore, it
costs totally O(

∑k
i=1 |Si|) = O(n) time to update the optimal solution in all intervals

[αi, αi+1] for i = 0, . . . , k − 1. We get the main result.

Theorem 3.5. The inverse distribution function of (IMUC) can be represented in
O(n2 logn) time.
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v∗
wv∗ = 0

v1

(wv1 , q̄v1) = (7, 2)

v2 (wv2 , p̄v2) = (1, 2)

v3

(wv3 , p̄v3) = (2, 1)

Fig. 1. An instance of (IMUC)

To illustrate the previous concept and algorithm, we consider the following example.
Example 3.6. Given a tree as in Figure 1 and v∗ is the prespecified vertex and its
weight is fixed. First, the subtree induced by {v1} violates the optimality criterion.
Therefore, we have to reduce the weight of v1 and increase the weight of v2 and v3.
Let ξ1 ∼ L(1, 6), ξ2 ∼ L(2, 5), ξ3 ∼ L(4, 5) be the uncertain costs of modifying one
unit weight of vertex v1, v2, v3, respectively. We can write the inverse distribution
function of the uncertain minimum cost as

Θ(α) := min{ (1 + 5α)x1 + (2 + 3α)x2 + (4 + α)x3 : x1 + x2 + x3 = 4,
0 ≤ x1 ≤ 2, 0 ≤ x2 ≤ 2, 0 ≤ x3 ≤ 1}.

The set of values such the cost coefficients change their ordering is {α1, α2} = { 1
2 ,

3
4}.

We first solve

min{x1 + 2x2 + 4x3 : x1 + x2 + x3 = 4, 0 ≤ x1 ≤ 2, 0 ≤ x2 ≤ 2, 0 ≤ x3 ≤ 1}

and get an optimal solution

(x(0)
1 , x

(0)
2 , x

(0)
3 ) = (2, 2, 0).

Therefore, Θ(α) = 6 + 16α for α ∈ [0, 1
2 ].

In order to find (x(1)
1 , x

(1)
2 , x

(1)
3 ). We first detect the functions that intersect at

α1 = 1
2 , they are in the ordering 2 + 3α, 1 + 5α. Then solve

min
{(

2 + 3
(1

2 + ε
))
x2 +

(
1 + 5

(1
2 + ε

))
x1 : x1 + x2 = 4, 0 ≤ x1 ≤ 2, 0 ≤ x2 ≤ 2

}
.
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One also obtains
(x(1)

1 , x
(1)
2 , x

(1)
3 ) = (2, 2, 0).

Then Θ(α) = 6 + 16α for α ∈ [ 1
2 ,

3
4 ].

In order to find (x(2)
1 , x

(2)
2 , x

(2)
3 ) we first detect the functions that intersect at

α2 = 3
4 , they are in the ordering 4 + α, 1 + 5α. Then solve

min
{

(4 +
(3

4 + ε
))
x3 +

(
1 + 5

(3
4 + ε

))
x1 : x1 + x3 = 2, 0 ≤ x1 ≤ 2, 0 ≤ x3 ≤ 1

}
.

One also obtains
(x(1)

1 , x
(1)
2 , x

(1)
3 ) = (2, 1, 1).

Then Θ(α) = 9 + 12α for α ∈ [ 3
4 , 1].

Therfore, the inverse distribution function can be writen as

Θ(α) :=
{

6 + 16α, if 0 ≤ α ≤ 3
4 ,

9 + 12α, if 3
4 ≤ α ≤ 1.

4. CONSLUSIONS

We have addressed in this paper the inverse 1-median problem on trees under uncertain
costs. Here, we aim to present the optimal cost Cα with respect to each confidence level
α ∈ [0, 1]. To attain this goal, we develop an algorithm to find the inverse distribution
function of an uncertain variable corresponding to minimum cost Cα, α ∈ [0, 1], in
O(n2 logn) time.

For future research, one can consider the inverse 1-center problem under uncertain
costs. Moreover, other parameters, like edge lengths or vertex weights, should be
uncertain variables and it is worthwhile to investigate the inverse location problem
under these uncertainties.
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