PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Physicochemical Properties of Marl and Travertine and their Thermally Modified Forms in the Perspective of Phosphorus Removal from Wastewater

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents physicochemical studies of nine reactive materials for removing phosphorus from wastewater and water. The materials under analysis are raw forms of marl and travertine along with their thermally treated forms at temperatures of 500 °C, 650 °C, 700 °C (travertine), 700 °C, 900 °C, 1000 °C (marl) and the commercial material Polonite®. The scope of the research included morphological analysis and elemental composition, specific surface area, pore volume and diameter, losses on ignition and the amount of elements leached from materials. The results of the research allowed assessing the impact of physicochemical properties and thermal modification on the efficiency of phosphorus binding by these materials. All the tested sorbents show the highest calcium content among the elements with the ability to bind phosphorus. The size of the specific surface does not determine the efficiency of phosphorus retention by the tested materials; therefore it is advisable to study the mechanism of its binding. The thermal modification process, along with the increase in the treatment temperature, improves the regularity of marl and travertine structures, which also manifests itself in increasing the efficiency of phosphorus removal.
Rocznik
Strony
56--65
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
  • Doctoral School of Engineering and Technical Sciences, Rzeszow University of Technology, aleja Powstańców Warszawy 12, 35-959 Rzeszów, Poland
  • Inżynieria Rzeszów S.A., ul. Podkarpacka 59A, 35-082 Rzeszów, Poland
  • Department of Environmental and Chemistry Engineering, Rzeszow University of Technology, aleja Powstańców Warszawy 6, 35-959 Rzeszów, Poland
  • Department of Environmental and Chemistry Engineering, Rzeszow University of Technology, aleja Powstańców Warszawy 6, 35-959 Rzeszów, Poland
  • Department of Environmental and Chemistry Engineering, Rzeszow University of Technology, aleja Powstańców Warszawy 6, 35-959 Rzeszów, Poland
Bibliografia
  • 1. Chen, M.P., Graedel, T.E. 2016. A half-century of global phosphorus flows, stocks, production, consumption, recycling, and environmental impacts. Glob. Environ. Change-Human Policy Dimens, 36, 139–152. DOI: 10.1016/j.gloenvcha.2015.12.005
  • 2. Golroudbary, A.S.R., El Wali, M., Kraslawski, A. 2019. Environmental sustainability of phosphorus recycling from wastewater, manure and solid wastes. Sci. Total Environ., 672, 515–524. DOI: 10.1016/j.scitotenv.2019.03.439
  • 3. Zhu, F.Y., Cakmak, E.K., Cetecioglu, Z. 2023. Phosphorus recovery for circular Economy: Application potential of feasible resources and engineering processes in Europe. Chem. Eng. J., 454, 15. DOI: 10.1016/j.cej.2022.140153
  • 4. Wu, D.Y., Zhang, B.H., Li, C.J., Zhang, Z.J., Kong, H.N. 2006. Simultaneous removal of ammonium and phosphate by zeolite synthesized from fly ash as influenced by salt treatment. J. Colloid Interface Sci., 304, 300–306. DOI: 10.1016/j.jcis.2006.09.011
  • 5. Gubernat, S., Masłoń, A., Czarnota, J., Koszelnik, P. 2020. Reactive Materials in the Removal of Phosphorus Compounds from Wastewater-A Review. Materials. 13, 3377. DOI: 10.3390/ma13153377
  • 6. Jucherski, A., Nastawny, M., Walczowski, A., Jóźwiakowski, K., Gajewska, M. 2017. Suitability studies of alkaline filtration materials for phosphates removal from biologically treated domestic sewage. Environmental Protection, 39, 33–38.
  • 7. Bus, A., Karczmarczyka, A., Baryla, A. 2022. Phosphorus reactive materials for permeable reactive barrier filling - lifespan estimations. Desalin. Water Treat., 245, 9–15. DOI: 10.5004/dwt.2022.27905
  • 8. Almanassra, I.W., McKay, G., Kochkodan, V., Atieh, M.A., Al-Ansari, T. 2021. A state of the art review on phosphate removal from water by biochars. Chem. Eng. J. 409, 15. DOI: 10.1016/j.cej.2020.128211
  • 9. Luo, D., Wang, L.Y., Nan, H.Y., Cao, Y.J., Wang, H., Kumar, T.V., Wang, C.Q. 2022. Phosphorus adsorption by functionalized biochar: a review. Environ. Chem. Lett. 28. DOI: 10.1007/s10311-022-01519-5
  • 10. Nguyen, T.T. 2022. Effective Removal of Phosphate from Waste Water Based on Silica Nanoparticles. J. Chem. 2022, 8. DOI: 10.1155/2022/9944126
  • 11. Nayeem, A., Mizi, F., Ali, M.F., Shariffuddin, J.H. 2023. Utilization of cockle shell powder as an adsorbent to remove phosphorus-containing wastewater. Environ. Res. 216, 8. DOI: 10.1016/j.envres.2022.114514
  • 12. Park, J.H., Choi, A.Y., Lee, S.L., Lee, J.H., Rho, J.S., Kim, S.H., Seo, D.C. 2022. Removal of phosphates using eggshells and calcined eggshells in high phosphate solutions. Appl. Biol. Chem. 65, 10. DOI: 10.1186/s13765-022-00744-4
  • 13. Deng, C.X., Xue, J.H., Wu, Y.B. 2023. Using magnetite/zirconium-comodified attapulgite as a novel phosphorus (P) sorbent for the efficient removal of P and the adsorption mechanism allowing this effect. Appl. Water Sci. 13, 14. DOI: 10.1007/s13201-022-01821-1
  • 14. Garbarczyk, C. 2010. Hydromechanics of water filtration Scientific and Technical Publishing House, Warsaw.
  • 15. Hamisi, R., Renman, A., Renman, G., Worman, A., Thunvik, R. 2022. Long-term phosphorus sorption and leaching in sand filters for onsite treatment systems. Sci. Total Environ., 833, 14. DOI: 10.1016/j.scitotenv.2022.155254
  • 16. Renman, A., Renman, G. 2022. Removal of Phosphorus from Hypolimnetic Lake Water by Reactive Filter Material in a Recirculating System-Laboratory Trial. Water. 14. DOI: 10.3390/w14050819
  • 17. Mesci, B.L. 2013. Travertines with original features and their importances: Examples from the Sivas travertines. Turk. Jeol. Bult., 56, 23–37.
  • 18. Kalender, L., Okan, O.O., Inceoz, M., Cetindag, B., Yildirim, V. 2015. Geochemistry of travertine deposits in the Eastern Anatolia District: an example of the Karakocan-Yogunagac (Elazig) and Mazgirt-Dedebag (Tunceli) travertines, Turkey. Turk. J. Earth Sci. 24, 607–626. DOI: 10.3906/yer-1504-27
  • 19. Gubernat, S., Masłoń, A., Czarnota, J., Koszelnik, P. 2022. Phosphorus removal from wastewater using marl and travertine and their thermal modifications. Desalin. Water Treat., 275, 35–46. DOI: 10.5004/dwt.2022.28529
  • 20. Kurdowski, W. 1981. Poradnik technologa przemysłu cementowego. Arkady Warszawa.
  • 21. Ryka, W., Maliszewska, A. 1982. Słownik petrograficzny. Wydawnictwa Geologiczne, Warszawa.
  • 22. Renman, A., Renman, G., 2010. Long-term phosphate removal by the calcium-silicate material Polonite in wastewater filtration systems. Chemosphere, 79, 659–664. DOI: 10.1016/j.chemosphere.2010.02.035
  • 23. Cucarella, V., Zaleski, T., Mazurek, R. 2009. Phosphorus sorption capacity of different types of opoka J. Environ. Qual., 38, 381–392.
  • 24. Brogowski, Z., Renman, G. 2004. Characterization of opoka as a basis for its use in wastewater treatment. Pol. J. Environ. Stud., 13, 15–20.
  • 25. Altundogan, H.S., Tumen, F. 2003. Removal of phosphates from aqueous solutions by using bauxite II: the activation study. Journal of Chemical Technology and Biotechnology, 78, 824–833. DOI: 10.1002/jctb.860
  • 26. Zhu, D.C., Chen, Y.Q., Yang, H.P., Wang, S.H., Wang, X.H., Zhang, S.H., Chen, H.P. 2020. Synthesis and characterization of magnesium oxide nanoparticle-containing biochar composites for efficient phosphorus removal from aqueous solution. Chemosphere, 247. DOI: 10.1016/j.chemosphere.2020.125847
  • 27. Xiong, W.H., Peng, J. 2008. Development and characterization of ferrihydrite-modified diatomite as a phosphorus adsorbent. Water Research, 42, 4869–4877. DOI: 10.1016/j.watres.2008.09.030
  • 28. Xie, F.Z., Da, C.N., Zhang, F.J., Zhang, J., Han, X., Ge, Y.J., Li, G.L. 2013. Phosphorus Removal from Eutrophic Waters with a Novel Lanthanum-Modified Diatomite. Asian J. Chem., 25, 5759–5761. DOI: 10.14233/ajchem.2013.OH84
  • 29. Yan, L.G., Xu, Y.Y., Yu, H.Q., Xin, X.D., Wei, Q., Du, B. 2010. Adsorption of phosphate from aqueous solution by hydroxy-aluminum, hydroxy-iron and hydroxy-iron-aluminum pillared bentonites. Journal of Hazardous Materials, 179, 244–250. DOI: 10.1016/j.jhazmat.2010.02.086
  • 30. Kuroki, V., Bosco, G.E., Fadini, P.S., Mozeto, A.A., Cestari, A.R., Carvalho, W.A., 2014. Use of a La(III)-modified bentonite for effective phosphate removal from aqueous media. Journal of Hazardous Materials, 274, 124–131. DOI: 10.1016/j.jhazmat.2014.03.023
  • 31. Wang, Y., He, H., Zhang, N., Shimizu, K., Lei, Z.F., Zhang, Z.Y. 2018. Efficient capture of phosphate from aqueous solution using acid activated akadama clay and mechanisms analysis. Water Sci. Technol., 78, 1603–1614. DOI: 10.2166/wst.2018.441
  • 32. Liu, Y., Sheng, X., Dong, Y.H., Ma, Y.J. 2012. Removal of high-concentration phosphate by calcite: Effect of sulfate and pH. Desalination, 289, 66–71. DOI: 10.1016/j.desal.2012.01.011
  • 33. Zapater-Pereyra, M., Malloci, E., van Bruggen, M.A., Lens, P.N.L. 2014. Use of marine and engineered materials for the removal of phosphorus from secondary effluent. Ecol. Eng., 73, 635–642. DOI: 10.1016/j.ecoleng.2014.09.112
  • 34. Tomaszewicz, M., Kotyczka-Morańska, M., Zuwała, J. 2016. Analysis of the possibility of using thermogravimetric analysis for quick determination of ignition losses in fly ash. Energy ashes, Zakopane, Polish Union of Combustion By-products.
  • 35. Carrillo, V., Fuentes, B., Gomez, G., Vidal, G. 2020. Characterization and recovery of phosphorus from wastewater by combined technologies. Rev. Environ. Sci. Bio-Technol., 19, 389–418. DOI: 10.1007/s11157-020-09533-1
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1e760e6d-f930-4fc0-acb5-e23c363a9cec
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.