PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Potential of low concentration nanofluids in heat transfer

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The main purpose of conducted studies was recognition of low concentration nanofluid under the influence of magnetic field potential applications. The investigations are having fundamental character but Authors keep in mind better energy utilization through the heat transfer enhancement. The examined fluid was composed of water and Cu/CuO nanoparticles. Three temperature differences were imposed on the system. The results did not give unequivocal answer on possible utilization of studied phenomena, but there is open scene for the studies of particle-fluid interaction and flow structure. The main conclusion is that the magnetic properties of base fluid and particles are crucial for such analysis.
Twórcy
autor
  • AGH University of Science and Technology, 30 Mickiewicza Av., 30-059 Krakow, Poland
  • AGH University of Science and Technology, 30 Mickiewicza Av., 30-059 Krakow, Poland
Bibliografia
  • [1] A. Ijam and R. Saidur, “Nanofluid as a coolant for electronic devices (cooling of electronic devices),” Appl. Therm. Eng. 32 (2012) 76-82.
  • [2] N. Putra, W. N. Septiadi, R. Sahmura, and C. T. Anggara, “Application of Al2O3 Nanofluid on Sintered Copper-Powder Vapor Chamber for Electronic Cooling,” Adv. Mater. Res. 789 (2013) 423-428.
  • [3] M. Rasponi, F. Piraino, N. Sadr, M. Laganà, A. Redaelli, and M. Moretti, “Reliable magnetic reversible assembly of complex microfluidic devices: fabrication, characterization, and biological validation,” Microfluid. Nanofluidics, vol. 10, no. 5 (2010) 1097-1107.
  • [4] M. T. H. Mosavian, S. Z. Heris, S. G. Etemad, and M. N. Esfahany, “Heat transfer enhancement by application of nano-powder,” J. Nanoparticle Res., vol. 12, no. 7 (2010) 2611-2619.
  • [5] Y. Xuan and Q. Li, “Heat transfer enhancement of nanofluids,” Int. J. heat fluid flow 21 (2000) 58-64.
  • [6] K. Khanafer, K. Vafai, and M. Lightstone, “Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids,” Int. J. Heat Mass Transf., vol. 46, no. 19 (2003) 3639-3653.
  • [7] D. Wen, G. Lin, S. Vafaei, and K. Zhang, “Review of nanofluids for heat transfer applications,” Particuology, vol. 7, no. 2 (2009) 141-150.
  • [8] S. U. S. Choi and J. A. Eastman, “Enhancing thermal conductivity of fluids with nanoparticles,” 1995.
  • [9] R. S. Shawgo, A. C. Richards Grayson, Y. Li, and M. J. Cima, “BioMEMS for drug delivery,” Curr. Opin. Solid State Mater. Sci., vol. 6, no. 4, pp. 329-334, Aug. 2002.
  • [10] O. Mahian, A. Kianifar, S. A. Kalogirou, I. Pop, and S. Wongwises, “A review of the applications of nanofluids in solar energy,” Int. J. Heat Mass Transf., vol. 57, no. 2, pp. 582-594, 2013.
  • [11] Y. He, Y. Jin, H. Chen, Y. Ding, D. Cang, and H. Lu, “Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe,” Int. J. Heat Mass Transf., vol. 50, no. 11-12, pp. 2272-2281, 2007.
  • [12] R. Taylor, S. Coulombe, T. Otanicar, P. Phelan, A. Gunawan, W. Lv, G. Rosengarten, R. Prasher, and H. Tyagi, “Small particles, big impacts: A review of the diverse applications of nanofluids,” J. Appl. Phys., vol. 113, no. 1 (2013) p. 011301.
  • [13] T. Bednarz, E. Fornalik, H. Ozoe, J. S. Szmyd, J. C. Patterson, and C. Lei, “Influence of a horizontal magnetic field on the natural convection of paramagnetic fluid in a cube heated and cooled from two vertical side walls,” Int. J. Therm. Sci., vol. 47, no. 6 (2008) 668-679.
  • [14] T. P. Bednarz, C. Lei, J. C. Patterson, and H. Ozoe, “Enhancing natural convection in a cube using a strong magnetic field - Experimental heat transfer rate measurements and flow visualization,” Int. Commun. Heat Mass Transf., vol. 36, no. 8 (2009) 97-102.
  • [15] E. Fornalik, P. Filar, T. Tagawa, H. Ozoe, and J. S. Szmyd, “Effect of a magnetic field on the convection of paramagnetic fluid in unstable and stable thermosyphon-like configurations,” Int. J. Heat Mass Transf., vol. 49, no. 15-16 (2006) 2642-2651.
  • [16] A. Roszko, E. Fornalik-Wajs, J. Donizak, J. Wajs, A. Kraszewska, and L. Pleskacz, “Magneto-thermal convection of low concentration nanofluids,” MATEC Web Conf., vol. 6, no. 18 (2014) 1-8.
  • [17] T. Bednarz, E. Fornalik, T. Tagawa, H. Ozoe, and J. S. Szmyd, “Experimental and numerical analyses of magnetic convection of paramagnetic fluid in a cube heated and cooled from opposing verticals walls,” Int. J. Therm. Sci., vol. 44, no. 10 (2005) 933-943.
  • [18] E. Fornalik, Magnetic convection of paramagnetic fluid in an enclosure. AGH Uczelniane Wydawnictwa Naukowo-Dydaktyczne, 2009.
  • [19] Y. Xuan and W. Roetzel, “Conceptions for heat transfer correlation of nanofluids,” Int. J. Heat Mass Transf., vol. 43 (2000) 3701-3707.
  • [20] http://www.fftw.org/.
  • [21] K. R. Sreenivasan, “The passive scalar spectrum and the Obukhov - Corrsin constant,” Phys. Fluids, vol. 8 (1996) 189-196 .
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1e735957-ee4f-42bd-9499-6865e3be6e67
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.