Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
PCFs (Photonic Crystal Fibers) with ‘T’ – shaped core have been proposed in this paper. ‘T’ –shaped core PCF structures have been analyzed using two different background materials: silica and lead silicate. A total of 360° rotation at an interval of 90° has been introduced in the design of PCF structures. PCF structures A, B, C and D with rotation of 0°, 90°, 180° and 270° have silica as wafer. Similarly PCF structures E, F, G and H with similar rotation have lead silicate as background material. Numerical investigations shows structures ‘D’, ‘F’, ‘G’ and ‘H’ to have anomalous dispersion. PCF structures ‘F’, ‘G’, and ‘H’ have reported birefringence of the order of 10⁻². Besides, other PCF structures report birefringence of the order of 10⁻³. Ultra low confinement loss has been observed in all the investigated PCF structures. Moreover, splice loss observed by the structure is very low. Large mode area has been shown by all the designed PCF structures.
Rocznik
Tom
Strony
541--546
Opis fizyczny
Bibliogr. 35 poz., rys., tab., wykr.
Twórcy
autor
- School of Electronics Engineering, Kalinga Institute of Industrial Technology University, Bhubaneswar, India
autor
- Electronics and Telecommunication Engineering, Kalinga Institute of Industrial Technology University, Bhubaneswar, India
autor
- School of Electronics Engineering, KIIT University, Bhubaneswar, Odisha, India
Bibliografia
- [1] J. C. Knight, T.A. Birks, P. St. J. Russell, and D. M. Atkin: “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21, pp. 1547-1549, 1996.
- [2] F. Zolla, G. Renversez, Andre Nicolet, B. Kuhlmey, S. Guenneau, D. Felbaeg, “Fundamentals of Photonic Crystal fibers”, Imperial College Press, 2005.
- [3] P. St. J. Russell, “Photonic Crystal Fibers”, J. Lightwave Techno., vol. 24, pp. 4729-4749, 2006.
- [4] T. P. Hansen, J. Broeng, S.E.B. Libori, E. Knudsen, A. Bjarklev, J.R. Jensen, H. Simonsen, Highly birefringent index-guiding photonic crystal fibers, IEEE Photonic Technol, Lett., vol. 13, no. 6, pp. 588-590, 2001.
- [5] J. C. Travers, W. Chang, J. Nold, N. Y. Joly and P. St. J. Russell, “Ultrafast nonlinear optics in gas filled hollow core photonic crystal fibers”, J. Opt. Soc. Am. B, vol. 28, pp. A11-A26, 2011.
- [6] J. C. Knight, J. Arriaga, T. A. Birks, A. Oritigosa Blanch, W. J. Wadsworth and P. St. J. Russell, “Anamolous dispersion in photonic crystal fiber”, IEEE Phot. Techn. Lett., vol. 12, pp. 807-810, 2000.
- [7] X. Chen, M. J. Li, N. Venkatraman, M. Gallaghar, W. Wood, A. Crowley, J. Carberry, L. Zenteno and K. Koch, “Highly birefringent hollow-core photonic bandgap fiber”, Opt. Express, vol. 12, pp. 3888-3893, Aug. 2004.
- [8] P. J. Roberts and T. J. Shepherd, “The guidance properties of multi core photonic crystal fibers,” J. Opt. A, Pure Appl. Opt., vol. 3, no. 6, pp. S133–S140, Nov. 2001.
- [9] K. P. Hansen, A. Petersson, J. R. Folkenberg, M. Albertsen and A. Bjarklev, “Birefringence induced splitting of the Zero-dispersion Wavelength in Nonlinear Photonic Crystal Fibers”, Opt. Lett., vol. 29, pp. 14–16, 2004.
- [10] P. Kumar, Rohan, V. Kumar, J. S. Roy, “Dodecagonal photonic crystal fibers with negative dispersion and low confinement loss”, Optik, vol. 144, pp. 363-369, 2017.
- [11] T. P. Hansen, J. Broeng, S.E.B. Libori, E. Knudsen, A. Bjarklev, J.R. Jensen, H. Simonsen, Highly birefringent index-guiding photonic crystal fibers, IEEE Photonic Technol, Lett. 13(6) (2001) 588-590.
- [12] R. F. Cregan, B.J. Mangan, J.C. Knight, T.A. Birks, P.St.J. Russell, P.J. Roberts, D.C.Allan, “Single-mode photonic band gap guidance of light in air”, Science 285(1999) 1537–1539.
- [13] G. An, X. Hao, S. Li, X. Yan, X. Zhang, "D-shaped photonic crystal fiber refractive index sensor based on surface plasmon resonance", Applied Optics, vol. 56, no. 24, Aug. 2017.
- [14] P. Kumar, P. Das, A. K. Meher, “S-shaped and U-shaped photonic crystal fiber with zero dispersion”, IJAER, Spl.issue, vol. 10, Number 20,pp. 18666-18669, October, 2015.
- [15] P. S. Majhi, R. Choudhary, "Circular photonic crystal fibers: numerical analysis of chromatic dispersion and loss", ISRN Opt., 2013.
- [16] M. M. Haquea, M. S. Rahman, M. S. Habib, S. M. A. Razzak, "Design and charaterization of single mode circular photonic crystal fibers for broadband dispersion compensation, Optik 125, (2014), 2608-2611.
- [17] M. M. Haquea, M. S. Rahman, M. S. Habib, S. M. A. Razzak, "Design and charaterization of single mode circular photonic crystal fibers for broadband dispersion compensation, Optik 125, pp. 2608-2611, 2014.
- [18] F. Poli, A. Cucinotta, S. Selleri and L. Vinecelli, “Characterization of micro structured optical fiber for wideband dispersion compensation”, J. Opt. Soc. Am. A., vol. 20, pp. 1958-1961, 2003.
- [19] K. Saitoh, M. Koshiba, "Highly nonlinear dispersion-flattened photonic crystal fiber for supercontinuum generation in a telecommunication window", Opt. Express , Vol. 12, pp. 2027-2032, 2004.
- [20] Konar S., Ghorai, K. S., and Bhattacharya, R. "Highly Birefringent Microstructure Fiber with Zero Dispersion Wavelength at 0.64 Micrometer." Fib. Int. Opt. vol. 28, 2009.
- [21] Rui Hao, Zhiquan Li, Huijing Du, LiyongNiu, “Squeezed hexagonal highly birefringent photonic crystal fiber with low effective modal area”, Optik, vol. 125, pp. 1971-1974, 2014.
- [22] T. Yang, E. Wang, H. Jiang, Z. Hu, K. Xie, “Highly birefringence photonic crystal fiber with high nonlinearity and low confinement loss”, Opt. Express, vol. 23, pp. 8329-8337, 2015.
- [23] K. Kaneshima, Y. Namhira, N. Zou, H. Higa, and Y. Nagata, “Numerical investigation of octagonal photonic crystal fibers ith strong confinement field”, IEICE Trans Electron., vol. E90-C, no. 6, pp. 830-837, 2006.
- [24] K. Saitosh, M. Koshiba, “Leakage loss and group velocity dispersion in air-core photonic bandgap fibers”, Opt. Express 11 (2003) 3100-3109.
- [25] K. Saitosh, M. Koshiba, Leakage loss and group velocity dispersion in air-core photonic bandgap fibers. Opt. Express, vol. 11, pp. 3100-3109, 2003.
- [26] P. Kumar, D. Ghosh, S. Chandra, J. S. Roy, “Propagation characteristics of ethanol doped photonic crystal fiber”, IJET, vol. 9, pp. 2338-2346, June-July, 2017.
- [27] H. Ademgil, S. Haxha, “PCF based sensor with high sensitivity, high birefringence and low confinement losses for liquid analyte sensing applications”, Sensors, vol. 15, no 12, pp. 31833-31842, 2015.
- [28] A. Medjouri, L. M. Simohamed, O. Ziane, “Investigation of high birefringence and chromatic dispersion management in photonic crystal fiber with square air holes”, Optik, 126, (2015), 2269-2274.
- [29] Y. Bo, L. Young, S. Li, “Characterstics analysis of photonic crystal fiber with octagonal hybrid cladding”, Optik 127, (2016) 9828-9832.
- [30] G. P. Agrawal, “Non-linear Fiber Optics”, Academic Press, 2011.
- [31] John D. Joannopoulos, Steven G. Johnson, Josgua N. Winn, Robert D. Mede, “Photonic Crystal Fiber: Molding the Flow of Light, 2nd Edition”, Priceton University Press, 2008.
- [32] A. Ghatak, K. Thyagarajan, “Introduction to Fiber optics”, 1st South Asian Edition 1999.
- [33] H. Ademgil, S. Haxha, “Highly birefringent nonlinear PCF for optical sensing of analytes in aqueous solutions”, Optik, vol. 30, no 10, pp. 1422-1432, 2012.
- [34] M. Chen, J. Yang, P. Sheng, X. Tong, H. Chen, “ Tunable microwave generation method based on birefringence photonic crystal fiber”, Optik 127, (2016) 5990-5999.
- [35] R. K. Gangwar, V. K. Singh, “Study of highly birefringence dispersion shifted photonic crystal fiber with asymmetrical cladding”, Optik, vol. 127, pp. 11854-11859, 2016.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1e722d47-1e13-4fea-9223-bb279c953e71