PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Hyperelastic behavior of porcine aorta segment under extension-inflation tests fitted with various phenomenological models

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Most of hyperelastic models for the constitutive modeling of the typical mechanical behaviour of the arterial wall tissue in literature are based on the test data from different animals and arteries. This paper is concerned with the material parameter identification of several phenomenological hyperelastic models by fitting the data from five extension-inflation tests of the porcine aorta segment, carried out in our laboratory. A membrane approximation is used to compute stresses and strains achieved during experiments, with usual assumption of material incompressibility. Three orthotropic two-dimensional strain-energy functions, based on use of the Green-Lagrange strains, are fitted to the test data: the well-known Fung’s exponential model; the classical polynomial model with seven constants; and the logarithmic model; as also, two three-dimensional models are employed: polyconvex anisotropic exponential hyperelastic model and the convex isotropic exponential rubber-like hyperelastic constitutive law depending on the first invariant of the right Cauchy-Green deformation tensor. It is found that isotropic model overestimates values of stresses in axial, and underestimates values of stresses in circumferential direction of artery segment, due to pronounced tissue anisotropy. Also, all considered two-dimensional models give good and similar prediction, while the polyconvex model demonstrates slightly lower performance in the axial direction of artery.
Rocznik
Strony
37--45
Opis fizyczny
Bibliogr. 25 poz., rys., wykr.
Twórcy
  • Research and Development Center for Bioengineering BioIRC, Kragujevac, Serbia
  • Research and Development Center for Bioengineering BioIRC, Kragujevac, Serbia
  • Faculty of Economics, University of Kragujevac, Kragujevac, Serbia
  • Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
autor
  • Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
autor
  • Research and Development Center for Bioengineering BioIRC, Kragujevac, Serbia
  • The Methodist Hospital Research Institute, Houston
Bibliografia
  • [1] CHOUNG C.J., FUNG Y.C., Three-dimensional Stress Distribution in Arteries, J. Biomech. Eng., 1983, 105(3), 268–274.
  • [2] DELFINO A., STERGIOPULOS N., MOORE J.E., MEISTER J.J., Residual strain effects on the stress field in a thick wall finite element model of the human carotid bifurcation, J. Biomech., 1997, 30(8), 777–786.
  • [3] FUNG Y.C., FRONEK K., PATITUCCI P., Pseudoelasticity of arteries and the choice of its mathematical expression, Am. J. Psyhol., 1979, 237, H620–H631.
  • [4] HOLZAPFEL G.A., GASSER C.T., OGDEN R.W., A new constitutive framework for arterial wall mechanics and comparative study of material models, J. Elasticity, 2000, 61(1–3), 1–48.
  • [5] HOLZAPFEL G.A., Nonlinear Solid Mechanics, 2001, reprinted 2007., John Wiley & Sons.
  • [6] HOLZAPFEL G.A., GASSER T.C., OGDEN R.W., Comparison of a Multi-Layer Structural Model for Arterial Walls with a Fung-Type Model, and Issues of Material Stability, J. Biomech. Eng., 2004, 126(2), 264–275.
  • [7] HOLZAPFEL G.A., OGDEN R.W., On planar biaxial tests for anisotropic nonlinearly elastic solids. A continuum mechanical framework, Mathematics and Mechanics of Solids, 2008, 14, 474–489.
  • [8] HOLZAPFEL G.A., OGDEN R.W., Constitutive modeling of arteries, Proc. R. Soc. A, 2010, 466, 1551–1597.
  • [9] HUMPREY J.D., Mechanics of the arterial wall: review and directions, Crit. Rev. in Biomed. Engr., 1995, 23, 1–162.
  • [10] HUMPREY J.D., An Evaluation of Pseudoelastic Descriptors Used in Arterial Mechanics, J. Biomech. Eng., 1999, 121, 259–262.
  • [11] ITSKOV M., EHRET A.E., MAVRILAS D., A polyconvex anisotropic strain–energy function for soft collagenous tissues, Biomech. Model. Mechanbiol., 2006, 5, 17–26.
  • [12] LALLY C., REID A.J., PRENDERGAST P.J., Elastic Behavior of Porcine Coronary Artery Tissue under Uniaxial and Equibiaxial Tension, Ann. Biomed. Eng., 2004, 32(10), 1355–1364.
  • [13] MARRA S.P., KENNEDY F.E., KINKAID J.N., FILLINGER M.F., Elastic and Rupture Properties of Porcine Aortic Tissue Measured Using Inflation Testing, Cardiovasc. Eng., 2006, 6, 125–133.
  • [14] MOONEY M.A., A theory of large elastic deformation, J. Appl. Phys., 1940, 11, 582–592.
  • [15] OGDEN R.W., Non-Linear Elastic Deformation, Dover Publications, New York 1997.
  • [16] OGDEN R.W., SACCAMONDI G., SQURA I., Fitting hyperelastic models to experimental data, Computational Mechanics, 2004, 34, 484–502.
  • [17] PRESS W.H., FLANNERY B.P., TEUKOLSKY S.A., VETERLING W.T., Numerical Recipes. The Art of Scientific Computing, Cambridge University Press, New York 1986.
  • [18] RAGHAVAN M.L., VORP D.A., Toward a biomechanical tool to evaluate rupture potential of abdominal aortic aneurysm: identification of a finite strain constitutive model and evaluation of its applicability, J. Biomech., 2000, 33(4), 475–482.
  • [19] RIVLIN R.S., SAUNDERS D.W., Large Elastic Deformations of Isotropic Materials. VII. Experiments on the Deformation of Rubber, Phil. Trans. Roy. Soc. London, 1951, 243(865), 251–288.
  • [20] SACKS M.S., Biaxial Mechanical Evaluation of Planar Biological Materials, J. Elasticity, 2000, 61, 199–246.
  • [21] TAKAMIZAWA K., HAYASHI K., Strain Energy Density Function and Uniform Strain Hypothesis for Arterial Mechanics, J. Biomech., 1987, 20(1), 7–17.
  • [22] VAISHNAV N.R., YOUNG J.T., JANICKI J.S., PATEL D.J., Nonlinear Anisotropic Elastic Properties of the Canine Aorta, Biophys. J., 1972, 12(8), 1008–1027.
  • [23] VANDE GEEST J.P., SACKS M.S., VORP D.A., The effects of aneurysm on the biaxial mechanical behaviour of human abdominal aorta, J Biomech., 2006, 39, 1324–1334.
  • [24] VELJKOVIĆ D.Ž., KOJIĆ M., Prediction of Planar Uniaxial and Constrained Biaxial State of Deformation by Commonly Used Anisotropic Constitutive Models in Arterial Mechanics, J. Serb. Soc. Comp. Mech., 2010, 4(2), 54–74.
  • [25] VELJKOVIĆ D.Ž., Simulation of passive biomechanical behavior of arterial walls by using hyperelastic material models, PhD Thesis, University of Kragujevac, Kragujevac, Serbia 2012 (in Serbian
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1e70daf4-f62f-46e5-ae73-69995b7f2d2c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.