PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Probabilistic lane segmentation using a low-dimensional linear parametrization

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Lane detection is an important module for active safety systems since it increases safety and reduces traffic accidents caused by driver inattention. Illumination changes or occlusions make lane detection a challenging task, especially if the detection is performed from a single image. Consequently, this paper presents a probabilistic approach based on the Kalman filter, which uses information from previous image frames to estimate the lane that could not be detected in the current image frame, considering uncertainty in the prediction as well as in the detection. To this end, a principal component analysis of the segmented curvature is introduced with the purpose of dimensionality reduction, moving from a large dimensional pixel representation to a considerably reduced space representation. Furthermore, the proposed approach is compared with a fully connected pretrained CNN model for lane detection, demonstrating that the proposed method has a lower computational cost in addition to a smoother transition between lane estimates.
Rocznik
Strony
179--189
Opis fizyczny
Bibliogr. 36 poz., rys., wykr.
Twórcy
  • Robotics and Advanced Manufacturing Group, Center for Research and Advanced Studies of the National Polytechnic Institute, 1062 Industria Metalúrgica, Ramos Arizpe, 25900, Mexico
  • School of Engineering and Sciences, Monterrey Institute of Technology, 2501 Eugenio Garza Sada Sur, Monterrey, 64700, Mexico
  • Robotics and Advanced Manufacturing Group, Center for Research and Advanced Studies of the National Polytechnic Institute, 1062 Industria Metalúrgica, Ramos Arizpe, 25900, Mexico
  • Robotics and Advanced Manufacturing Group, Center for Research and Advanced Studies of the National Polytechnic Institute, 1062 Industria Metalúrgica, Ramos Arizpe, 25900, Mexico
Bibliografia
  • [1] Åkesson, B.M., Jørgensen, J.B., Poulsen, N.K. and Jørgensen, S.B. (2008). A generalized autocovariance least-squares method for Kalman filter tuning, Journal of Process Control 18(7-8): 769-779, DOI: 10.1016/j.jprocont.2007.11.003.
  • [2] Assidiq, A., Khalifa, O.O., Islam, M.R. and Khan, S. (2008). Real time lane detection for autonomous vehicles, 2008 International Conference on Computer and Communication Engineering, Kuala Lumpur, Malaysia, pp. 82-88, DOI: 10.1109/iccce.2008.4580573.
  • [3] Barshan, E., Ghodsi, A., Azimifar, Z. and Jahromi, M.Z. (2011). Supervised principal component analysis: Visualization, classification and regression on subspaces and submanifolds, Pattern Recognition 44(7): 1357-1371, DOI: 10.1016/j.patcog.2010.12.015.
  • [4] Borkar, A., Hayes, M. and Smith, M.T. (2009). Robust lane detection and tracking with RANSAC and Kalman filter, 2009 16th IEEE International Conference on Image Processing (ICIP), Cairo, Egypt, pp. 3261-3264, DOI: 10.1109/icip.2009.5413980.
  • [5] Chiang, W.-L., Liu, X., Si, S., Li, Y., Bengio, S. and Hsieh, C.-J. (2019). Cluster-GCN: An efficient algorithm for training deep and large graph convolutional networks, 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD’19, Anchorage, USA, pp. 257-266, DOI: 10.1145/3292500.3330925.
  • [6] Chiu, K.-Y. and Lin, S.-F. (2005). Lane detection using color-based segmentation, Intelligent Vehicles Symposium, Las Vegas, USA, pp. 706-711, DOI: 10.1109/ivs.2005.1505186.
  • [7] Danescu, R. and Nedevschi, S. (2009). Probabilistic lane tracking in difficult road scenarios using stereovision, IEEE Transactions on Intelligent Transportation Systems 10(2): 272-282, DOI: 10.1109/tits.2009.2018328.
  • [8] Finlayson, G.D., Hordley, S.D. and Drew, M.S. (2002). Removing shadows from images, in A. Heyden et al. (Eds), Computer Vision, ECCV 2002, Springer, Berlin/Heidelberg, pp. 823-836, DOI: 10.1007/3-540-47979-1 55.
  • [9] Gao, L.,Wu, L. and Meng, X. (2022). EL-GAN: Edge-enhanced generative adversarial network for layout-to-image generation, Computer Graphics Forum 41(7): 407-418, DOI: 10.1111/cgf.14687.
  • [10] Green, B. (2002). Canny edge detection tutorial, https://docs.opencv.org/4.x/da/d22/tutorial_py_canny.html.
  • [11] Johnson, S.C. (1967). Hierarchical clustering schemes, Psychometrika 32(3): 241-254.
  • [12] Kluge, K. and Lakshmanan, S. (1995). A deformable-template approach to lane detection, Intelligent Vehicles '95 Symposium, Detroit, USA, pp. 54-59, DOI: 10.1109/ivs.1995.528257.
  • [13] Kreucher, C., Lakshmanan, S. and Kluge, K. (1998). A driver warning system based on the LOIS lane detection algorithm, IEEE International Conference on Intelligent Vehicles, Stuttgart, Germany, Vol. 1, pp. 17-22.
  • [14] Li, M., Li, Y. and Jiang, M. (2018). Lane detection based on connection of various feature extraction methods, Advances in Multimedia 2018(1): 8320207, DOI: 10.1155/2018/8320207.
  • [15] Liu, G., Wörgötter, F. and Markelić, I. (2010). Combining statistical Hough transform and particle filter for robust lane detection and tracking, 2010 IEEE Intelligent Vehicles Symposium, La Jolla, USA, pp. 993-997, DOI: 10.1109/ivs.2010.5548021.
  • [16] Liu, G., Wu, S., Zhu, L., Wang, J. and Lv, Q. (2022). Fast and smooth trajectory planning for a class of linear systems based on parameter and constraint reduction, International Journal of Applied Mathematics and Computer Science 32(1): 11-21, DOI: 10.34768/amcs-2022-0002.
  • [17] Macias, J. and Gomez, A. (2006). Self-tuning of Kalman filters for harmonic computation, IEEE Transactions on Power Delivery 21(1): 501-503, DOI: 10.1109/tpwrd.2005.860411.
  • [18] Mammeri, A., Boukerche, A. and Lu, G. (2014). Lane detection and tracking system based on the MSER algorithm, Hough transform and Kalman filter, 17th ACM international conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems, MSWiM’14, Montreal, Canada, pp. 259-266, DOI: 10.1145/2641798.2641807.
  • [19] McCall, J. and Trivedi, M. (2004). An integrated, robust approach to lane marking detection and lane tracking, IEEE Intelligent Vehicles Symposium, Parma, Italy, pp. 533-537, DOI: 10.1109/ivs.2004.1336440.
  • [20] Meuter, M., Muller-Schneiders, S., Mika, A., Hold, S., Nunn, C. and Kummert, A. (2009). A novel approach to lane detection and tracking, 12th International IEEE Conference on Intelligent Transportation Systems, St. Louis, USA, pp. 1-6, DOI: 10.1109/itsc.2009.5309855.
  • [21] Nieto, M., Cortés, A., Otaegui, O., Arróspide, J. and Salgado, L. (2012). Real-time lane tracking using Rao-Blackwellized particle filter, Journal of Real-Time Image Processing 11(1): 179-191, DOI: 10.1007/s11554-012-0315-0.
  • [22] Odelson, B., Lutz, A. and Rawlings, J. (2006). The autocovariance least-squares method for estimating covariances: Application to model-based control of chemical reactors, IEEE Transactions on Control Systems Technology 14(3): 532-540, DOI: 10.1109/tcst.2005.860519.
  • [23] Parashar, A., Rhu, M., Mukkara, A., Puglielli, A., Venkatesan, R., Khailany, B., Emer, J., Keckler, S.W. and Dally, W.J. (2017). SCNN: An accelerator for compressed-sparse convolutional neural networks, ACM SIGARCH Computer Architecture News 45(2): 27-40, DOI: 10.1145/3140659.3080254.
  • [24] Phueakjeen, W., Jindapetch, N., Kuburat, L. and Suvanvorn, N. (2011). A study of the edge detection for road lane, 8th Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI), Khon Kaen, Thailand, pp. 995-998, DOI: 10.1109/ecticon.2011.5948010.
  • [25] Rhouma, T., Keller, J.-Y. and Abdelkrim, M.N. (2022). A Kalman filter with intermittent observations and reconstruction of data losses, International Journal of Applied Mathematics and Computer Science 32(2): 241-253, DOI: 10.34768/amcs-2022-0018.
  • [26] Sumithra, S. and Vadivel, R. (2021). An optimal innovation based adaptive estimation Kalman filter for accurate positioning in a vehicular ad-hoc network, International Journal of Applied Mathematics and Computer Acience 31(1): 45-57, DOI: 10.34768/amcs-2021-0004.
  • [27] Sun, T.-Y., Tsai, S.-J. and Chan, V. (2006). HSI color model based lane-marking detection, 2006 IEEE Intelligent Transportation Systems Conference, Ontario, Canada, pp. 1168-1172, DOI: 10.1109/itsc.2006.1707380.
  • [28] Tang, J., Li, S. and Liu, P. (2021). A review of lane detection methods based on deep learning, Pattern Recognition 111(4): 107623, DOI: 10.1016/j.patcog.2020.107623.
  • [29] Tharrault, Y., Mourot, G. and Ragot, J. (2008). Fault detection and isolation with robust principal component analysis, 16th Mediterranean Conference on Control and Automation, Ajaccio, France, pp. 59-64, DOI: doi.org/10.1109/med.2008.4602224.
  • [30] Thorpe, C., Herbert, M., Kanade, T. and Shafer, S. (1991). Toward autonomous driving: The CMU Navlab. I: Perception, IEEE Expert 6(4): 31-42, DOI: 10.1109/64.85919.
  • [31] Thrun, S., Burgard, W. and Fox, D.D. (2005). Probabilistic Robotics, MIT Press, Cambridge, pp. 16-39.
  • [32] Truong, Q.-B. and Lee, B.-R. (2008). New lane detection algorithm for autonomous vehicles using computer vision, 2008 International Conference on Control, Automation and Systems, Seoul, Korea (South), pp. 1208-1213, DOI: 10.1109/iccas.2008.4694332.
  • [33] Wang, Y., Teoh, E.K. and Shen, D. (2004). Lane detection and tracking using B-snake, Image and Vision Computing 22(4): 269-280, DOI: 10.1016/j.imavis.2003.10.003.
  • [34] Yenikaya, S., Yenikaya, G. and Düven, E. (2013). Keeping the vehicle on the road, ACM Computing Surveys 46(1): 1-43, DOI: 10.1145/2522968.2522970.
  • [35] Zakaria, N.J., Shapiai, M.I., Ghani, R.A., Yassin, M.N.M., Ibrahim, M.Z. and Wahid, N. (2023). Lane detection in autonomous vehicles: A systematic review, IEEE Access 11: 3729-3765, DOI: 10.1109/ACCESS.2023.3234442.
  • [36] Zou, Q., Jiang, H., Dai, Q., Yue, Y., Chen, L. and Wang, Q. (2020). Robust lane detection from continuous driving scenes using deep neural networks, IEEE Transactions on Vehicular Technology 69(1): 41-54, DOI: 10.1109/tvt.2019.2949603.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1e6ec6cd-e879-4c78-a566-1fabc8313ce1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.