PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Examining Water Quality Indices Method in Varied Climatic Regions – Sutami Reservoir Case Study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Monitoring and analyzing reservoir water quality are crucial for ecological and environmental strategies. This study examines the differences between the water quality index (WQI) of Indonesia (WQI-INA), Malaysia (DOE-Malaysia), Oregon (WQI-Oregon), and Italy (PI-Prati), considering the tropical climate of Indonesia and Malaysia, and contrasting with the temperate climate of Oregon and the Mediterranean climate of Italy. Using data from the Sutami Reservoir in Indonesia from 2015 to 2021, the study assesses water quality parameters such as BOD, COD, DO, NH3 , NO3 , total suspended solids, total phosphorus (TP), and pH at various depths (0.3, 5, and 10 meters) across three sites (upstream, midstream, downstream). The results show varied classifications: WQI-INA rated the reservoir as “pretty good,” WQI-Oregon as “poor,” and both DOE-Malaysia and PI-Prati as “slightly polluted.” Spatial analysis of vertical distribution revealed “slightly polluted” (WQI-INA), “moderately polluted” (WQI-Oregon and PI-Prati), and “heavily polluted” (DOE-Malaysia). These discrepancies arise from differences in local environmental standards, regulatory requirements, and specific water quality concerns included in each index. The Sutami Reservoir water quality status was declared using WQI-INA, however, other methods were employed to simulate the worst-case scenarios and inform preventive actions. The Sutami Reservoir hyper-eutrophic conditions indicate a pollution load capacity of 65.22 tons per year. Critical parameters such as pH and TP highlight significant water quality and pollution issues. Recommendations for water quality treatment under heavy pollution conditions include applying 12.09–120.87 tons of lime, using 78.75–393.75 kg of chemical buffers, oxygen diffusion, controlling riparian vegetation over 2.37–23.7 hectares, dredging 37,100 m3 of sediment per year, and reducing nutrient sources through community involvement.
Twórcy
  • Department of Water Resources Engineering, Faculty of Engineering, Brawijaya University, Jl. Veteran, Malang 65145, East Java, Indonesia
  • Department of Water Resources Engineering, Faculty of Engineering, Brawijaya University, Jl. Veteran, Malang 65145, East Java, Indonesia
  • Department of Soil, Faculty of Agriculture, Brawijaya University, Jl. Veteran, Malang 65145, East Java, Indonesia
  • Department of Chemical Engineering, Faculty of Engineering, Brawijaya University, Jl. Veteran, Malang 65145, East Java, Indonesia
  • Department of Aquaculture, Faculty of Fisheries and Marine Science, Brawijaya University, Jl. Veteran, Malang 65145, East Java, Indonesia
Bibliografia
  • 1. Akhtar, N., Ishak, M.I.S., Ahmad, M.I., Umar, K., Md Yusuff, M.S., Anees, M.T., Qadir, A., Ali Almanasir, Y.K. 2021. Modification of the Water Quality Index (WQI) Process for Simple calculation using the Multi-Criteria Decision-Making (MCDM) Method: A Review. Water. 13, 905. https://doi.org/10.3390/w13070905
  • 2. Aktas, K., Liu, H., Eskicioglu, C. 2024. Treatment of aqueous phase from hydrothermal liquefaction of municipal sludge by adsorption: Comparison of biochar, hydrochar, and granular activated carbon. Journal of Environmental Management. 356, 120619. https://doi.org/10.1016/j.jenvman.2024.120619
  • 3. Anh, N.T., Can, L.D., Nhan, N.T., Schmalz, B., Luu, T.L. 2023. Influences of key factors on river water quality in urban and rural areas: A review. Case Studies in Chemical and Environmental Engineering. 8, 100424. https://doi.org/10.1016/j.cscee.2023.100424
  • 4. Bhateria, R., Jain, D. 2016. Water quality assessment of lake water: a review. Sustainable Water Resources Management. 2, 161–173. https://doi.org/10.1007/s40899-015-0014-7
  • 5. Cantonati, M., Poikane, S., Pringle, C.M., Stevens, L.E., Turak, E., Heino, J., Richardson, J.S., et.al. 2020. Water. 12, 1, 260. Characteristics, Main Impacts, and Stewardship of Natural and Artificial Freshwater Environments: Consequences for Biodiversity Conservation. https://www.mdpi.com/2073-4441/12/1/260
  • 6. Chapman, D. 1992. Water Quality Assessments - A Guide to Use of Biota, Sediments and Water in Environmental Monitoring - Second Edition. doi.10.4324/9780203476710.
  • 7. Chapagain, S.K., Mohan, G., Rimba, A.B., Payus, C., Sudarma, I.M., Fukushi, K. 2022. Analyzing the relationship between water pollution and economic activity for a more effective pollution control policy in Bali Province, Indonesia. Sustain Environ Res. 32, 5. https://doi.org/10.1186/s42834-021-00115-6
  • 8. Chen, P., Ye, G., Xu, X., Xi, W., Xu, D. 2024. Water environmental capacity analysis and eutrophication assessment of water-supplied reservoirs. Desalination and Water Treatment. 317, 100200. https://doi.org/10.1016/j.dwt.2024.100200
  • 9. Cho, J.H., Ahn, K.H., Chung, W.J., Gwon, E.M. 2003. Waste load allocation for water quality management of a heavily polluted river using linear programming. Water Science and technology: a journal of the International Association on Water Pollution Research, 48(10), 185–190.
  • 10. Chou, J.S., Ho, C.C., Hoang, H.S. 2018. Determining quality of water in reservoir using machine learning. Ecological Informatics. 44, 57–75. https://doi.org/10.1016/j.ecoinf.2018.01.005
  • 11. Chouler, J., Di Lorenzo, M. 2015. Water Quality Monitoring in Developing Countries; Can Microbial Fuel Cells be the Answer?. Biosensors, 5(3), 450–470. https://doi.org/10.3390/bios5030450
  • 12. Cude, C.G., 2001. Oregon Water Quality Index: A tool for evaluating water quality management effectiveness. J. Am. Water Resour. Assoc. https://doi.org/10.1111/j.1752-1688.2001.tb05480.x
  • 13. Dauda, A.B., Romano, N., Ebrahimi, M., The, J., Ajadi, C., A., Chong, C.M., Karim, M., Natrah, I., Kamarudin, M.S. 2018. Influence of carbon/nitrogen ratios on biofloc production and biochemical composition and subsequent effects on the growth, physiological status and disease resistance of African catfish (Clarias gariepinus) cultured in glycerolbased biofloc systems. Aquaculture. 483, 120–130. https://doi.org/10.1016/j.aquaculture.2017.10.016
  • 14. Dewi, R., Anwar, H., Asiah, Retno, P. dan hasni, A.P. 2016. Determination of parameter and sub-index curves for preparing water quality index. Ecolab. 10, 2, 47 – 102.
  • 15. Dunnette, D.A. 1979. A geographically variable Water Quality Index Used in Oregon. Journal (Water Pollution Control Federation), 51, 1, 53–61. http://www.jstor.org/stable/25040240
  • 16. Firmahaya, N.A., Piranti, A.S. 2022. Determination of Water Quality Status of Telaga Menjer Wonosobo, Indonesia: An official tool for evaluating the best function of water. Journal of Ecological Engineering. 23(3), 59–67. https://doi.org/10.12911/22998993/144692
  • 17. Fulazzaky, M.A., Seong, T.W., Masirin, M.I.M. 2010. Assessment of water quality status for the Selangor River in Malaysia. Water, Air, and Soil Pollution. 63, 77, 205, 1. https://doi.org/10.1007/s11270-009-0056-2
  • 18. Government of Indonesia. 2009. Ministerial Regulation (Permen) of the Environment Number 28 of 2009 on the Water Pollution Load Capacity of Lakes or Reservoirs.
  • 19. Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the First Addendum. (2017). World Health Organization.
  • 20. Khalik, I., Sapei, A., Hariyadi, S., Anggraeni, E., Hekmuseta, W., Mardiana, M. 2023. Study of water quality status of dendam Tak Sudah Lake in Bengkulu City, Indonesia: Using CCME Index. Polish Journal of Environmental Studies. 32(2), 1633–1643. https://doi.org/10.15244/pjoes/156580
  • 21. Khatri, N., Tyagi, S. 2014. Influences of natural and anthropogenic factors on surface and groundwater quality in rural and urban areas. Frontiers in Life Science. 8(1), 23–39. https://doi.org/10.1080/21553769.2014.933716
  • 22. Kuriqi, A., Pinheiro, A.N., Ward, A.S., Bejarano, M.D., Garrote, L. 2021. Ecological impacts of run-of-river hydropower plants-Current status and future prospects on the brink of energy transition. Renewable and Sustainable Energy Reviews. 142, 110833. https://doi.org/10.1016/j.rser.2021.110833
  • 23. Lestari, S., King, A., Vincent, C., Karoly, D., Protat, A. 2019. Seasonal dependence of rainfall extremes in and around Jakarta, Indonesia. Weather and Climate Extremes. 24, 100202. https://doi.org/10.1016/j.wace.2019.100202
  • 24. Li, W., Xu, S., Chen, X., Han, D., Mu, B. Influencing factors and nutrient release from sediments in the water level fluctuation zone of Biliuhe Reservoir, a drinking water reservoir. Water 2023, 15, 3659. https://doi.org/10.3390/w15203659
  • 25. Mamun, M., Atique, U., An, K.-G. 2021. Assessment of water quality based on trophic status and nutrients-chlorophyll empirical models of different elevation reservoirs. Water, 13, 3640. https://doi.org/10.3390/w13243640
  • 26. Marselina, M., Burhanudin, M. 2017. Trophic status assessment of saguling reservoir, upper Citarum Basin, Indonesia. Air, Soil, and Water Research. 10, 1–8. doi:10.1177/1178622117746660.
  • 27. Mishra, R.K., Mentha, S.S., Misra, Y., Dwivedi, N. 2023. Emerging pollutants of severe environmental concern in water and wastewater: A comprehensive review on current developments and future research. Water-Energy Nexus. 6, 74-95. https://doi.org/10.1016/j.wen.2023.08.002
  • 28. Moloantoa, K.M., Khetsha, Z.P., Heerden, v. E., Castillo, J.C., Cason, E.D. 2022. Nitrate water contamination from industrial activities and complete denitrification as a remediation option. Water. 14, 5, 799. https://www.mdpi.com/2073-4441/14/5/799
  • 29. Nyanti, L., Soo, C.L., Danial-Nakhaie, M.-S., Ling, T.-Y., Sim, S.-F., Grinang, J., Ganyani., T, Lee, K.- S.-P. 2018. Effects of water temperature and ph on total suspended solids tolerance of Malaysian native and exotic fish species. AACL Bioflux. 11. 565–575.
  • 30. O’Donnell, D.R., Wilburn, P., Silow, E.A., Yampolsky, L.Y., Litchman, E. 2017. Nitrogen and phosphorus colimitation of phytoplankton in Lake Baikal: Insights from a spatial survey and nutrient enrichment experiments. Limnology and Oceanography. 4, 62, 1383–1392. https://doi.org/10.1002/lno.10505
  • 31. Lokman, N.A., Ithnin, A.M., Yahya, W.J., Yuzir, M.A. 2021. A brief review on biochemical oxygen demand (BOD) treatment methods for palm oil mill effluents (POME), Environmental Technology & Innovation. 21, 101258. https://doi.org/10.1016/j.eti.2020.101258
  • 32. Mosley, L.M. 2015. Drought impacts on the water quality of freshwater systems; review and integration. Earth-Science Reviews. 140, 203-214. https://doi.org/10.1016/j.earscirev.2014.11.010
  • 33. Prati, L., Pavanello, R., Pesarin, F. 1971. Assessment of surface water quality by a single index of pollution. Water Research, 5, 9, 741–751. doi:10.1016/0043-1354(71)90097-2.
  • 34. Rahardjo, S.S.P., Shih, Y.J. 2022. Electrocatalytic ammonia oxidation mediated by nickel and copper crystallites decorated with platinum nanoparticle (PtM/G, M = Cu, Ni). ACS Sustainable Chemistry & Engineering. 15, 10, 5043–5054. https://doi.org/10.1021/acssuschemeng.2c00740
  • 35. Rahardjo, S.S.P., Shih, Y.J. 2023. Electrochemical characteristics of silver/nickel oxide (Ag/ Ni) for direct ammonia oxidation and nitrogen selectivity in paired electrode system. Chemical Engineering Journal. 452(2), 139370, https://doi.org/10.1016/j.cej.2022.139370
  • 36. Rahardjo, S.S.P., Shih, Y.J. 2023. In-situ phase transformation of silver oxide nanoparticles encapsulated in reduced graphene oxide (Ag/rGO) for direct electrochemical ammonia oxidation. Chemical Engineering Journal. 473,145396. https://doi.org/10.1016/j.cej.2023.145396
  • 37. Rahardjo, S.S.P., Shih, Y.J., Fan, C.S. 2024. Ammonia oxidation by in-situ chloride electrolysis in etching wastewater of semiconductor manufacturing using RuSnOx/Ti electrode: Effect of plating mode and metal ratio. Journal of Hazardous Materials. 469, 134042. https://doi.org/10.1016/j.jhazmat.2024.134042
  • 38. Rather, R.A., Wani, A.W., Mumtaz, S., Padder, S.A., Khan, A.H., Almohana, A.I., Almojil, S.F., Alam, S.S., Baba, T.R.. 2022. Bioenergy: a foundation to environmental sustainability in a changing global climate scenario, Journal of King Saud University – Science. 34, 1, 101734. https://doi.org/10.1016/j.jksus.2021.101734
  • 39. Saalidong, B.M., Aram, S.A., Otu, S., Lartey, P.O. 2022. Examining the dynamics of the relationship between water pH and other water quality parameters in ground and surface water systems. PloS one, 17(1), e0262117. https://doi.org/10.1371/journal.pone.0262117
  • 40. Simoni, M., Hanein, T., Woo, C.L., Nyberg, M., Tyrer, M., Provis, J.L., Kinoshita, H. 2022. Synthesis of Ca(OH)2 and Na2 CO3 through anion exchange between CaCO3 and NaOH: effect of reaction temperature. RSC advances, 12(49), 32070–32081. https://doi.org/10.1039/d2ra05827h
  • 41. Syeed, M.M.M., Hossain, M.S., Karim, M.R., Uddin, M.F., Hasan, M., Khan, R.H. 2023. Surface water quality profiling using the water quality index, pollution index and statistical methods: A critical review. Environmental and Sustainability Indicators. 18, 100247, https://doi.org/10.1016/j.indic.2023.100247
  • 42. Uddin, M.G., Nash, S., Olbert, A.I. 2021. A review of water quality index models and their use for assessing surface water quality. Ecological Indicators. 122, 107218, https://doi.org/10.1016/j.ecolind.2020.107218
  • 43. Wu, Z.L., Shih, Y.J, Rahardjo, S.S.P., Huang, C.P. 2023. characteristics of copper and tin-based rhodium bimetallic electrodes for highly selective ammonia yield in electrochemical denitrification. ACS Sustainable Chemistry & Engineering. 30, 11, 11321–11332. https://doi.org/10.1021/acssuschemeng.3c03302.
  • 44. Xiang, R. Wang, L., Li, H., Tian, Z., Zheng, B. 2021. Water quality variation in tributaries of the Three Gorges Reservoir from 2000 to 2015, Water Research, 195, 116993. https://doi.org/10.1016/j.watres.2021.116993
  • 45. Yang, X.E., Wu, X., Hao, H.L., He, Z.L. 2008. Mechanisms and assessment of water eutrophication. Journal of Zhejiang University. Science. B, 9(3), 197–209. https://doi.org/10.1631/jzus.B0710626
  • 46. Yang, Y., Chen, Y., Li, Z., Zhang, Y., Lu, L. 2023. Microbial community and soil enzyme activities driving microbial metabolic efficiency patterns in riparian soils of the Three Gorges Reservoir. Frontiers in microbiology, 14, 1108025. https://doi.org/10.3389/fmicb.2023.1108025
  • 47. Zhang, M., Wang, S., Sun, Z., Jiang, H., Qian, Y., Wang, R., Li, M. 2022. The effects of acute and chronic ammonia exposure on growth, survival, and free amino acid abundance in juvenile Japanese sea perch Lateolabrax japonicus. Aquaculture. 560, 738512. https://doi.org/10.1016/j.aquaculture.2022.738512
  • 48. Zhu, L., Li, X., Bai, Y., Yi, T., Yao, L. 2019. Evaluation of water resources carrying capacity and its obstruction factor analysis: A case study of Hubei Province, China. Water. 2573, 12, 11, 2073–4441. https://www.mdpi.com/2073-4441/11/12/2573
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1e6b4de0-ad44-4145-8cb0-e30c983be34d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.