Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The fouling phenomenon of porous polymeric ultrafiltration and nanofiltration membranes was investigated during the purification of solutions containing surfactants. The effects of surfactant type, concentration, and membrane pore size on process performance were evaluated. The highest intensity of membrane fouling was caused by micellar solutions, resulting from the coexistence of monomeric and aggregated surfactant forms. A significant role of hydrophobic/hydrophilic interactions between surfactants and the polymer surface in membrane fouling was proved. Interpretation of the theoretical fouling model showed that cake formation is the dominant fouling mechanism of membranes.
Czasopismo
Rocznik
Tom
Strony
109--119
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
autor
- Wrocław University of Science and Technology, Faculty of Environmental Engineering, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
autor
- Wrocław University of Science and Technology, Faculty of Environmental Engineering, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
Bibliografia
- [1] HIDALGO A.M., LEON G., MURCIA M.D., GOMEZ M., GOMEZ E., GOMEZ J.L., Using pressure-driven membrane processes to remove emerging pollutants from aqueous solutions, Int. J. Environ. Res. Publ. Health, 2021, 18 (8), 4036. DOI: 10.3390/ijerph18084036.
- [2] DUDZIAK M., Retention of mycoestrogens in nanofiltration, Impact of feed water chemistry, membrane properties and operating process conditions, Environ. Prot. Eng., 2012, 38 (2), 5–17. DOI: 10.5277 /epe120201.
- [3] MALLYA D.S., ABDIKHEIBARI S., DUMÉE L.F., MUTHUKUMARAN S., LEI W.,BASKARAN K., Removal of natural organic matter from surface water sources by nanofiltration and surface engineering membranes for fouling mitigation. A review, Chemosphere, 2023, 321, 138070. DOI: 10.1016/j.chemosphere.2023.138070.
- [4] DOLAR D., KOSUTIC K., Removal of pharmaceuticals by ultrafiltration (UF), nanofiltration (NF), and reverse osmosis (RO) (Chapter 10), Compr. Anal. Chem., 2013, 62, 319–344. DOI: 10.1016/B978-0 -444-62657-8.00010-0.
- [5] ABDELRASOUL A., DOAN H., LOHI A., Fouling in membrane filtration and remediation methods, [In:] H. Nakajima (Ed.), Mass transfer. Advances in sustainable energy and environment oriented numerical modeling, Intech Open, 2013. DOI: 10.5772/52370.
- [6] STAROV V.M., KOSVINTSEV S.R., VELARDE M.G., Spreading of surfactant solutions over hydrophobic substrates, J. Colloid. Interf. Sci., 2000, 227 (1), 185–190. DOI: 10.1006/jcis.2000.6851.
- [7] STANISCIA F., GUZMAN H.V., KANDUC M., Tuning contact angles of aqueous droplets on hydrophilic and hydrophobic surfaces by surfactants, J. Phys. Chem. B., 2022, 126 (17), 3374–3384. DOI: 10.1021/acs. jpcb.2c01599.
- [8] HALLEB A., NAKAJIMA M., YOKOYAMA F., NEVES M.A., Effect of surfactants on reverse osmosis membrane performance, Separations, 2023, 10 (3), 168. DOI: 10.3390/separations10030168.
- [9] MAI Z., COUALLIER E., ZHU H., ROUSSEAU B., RAKIB M., Mechanisms of RO membrane fouling by surfactants: a combination of experiments and simulation studies, 2012, Euromembrane Conference, Londres, France, 1751–1752. DOI: 10.1016/j.proeng.2012.08.935.
- [10] KISHIMOTO N., KIMURA H., Fouling behaviour of a reverse osmosis membrane by three types of surfactants, J. Water Reuse Desal., 2012, 2 (1), 40–46. DOI: 10.2166/wrd.2012.065.
- [11] SHI L., HUANG J., ZENG G., ZHU L., GU Y., SHI Y., YI K., LI X., Role of surfactants in pressure-driven membrane separation processes: a review, Environ. Sci. Pollut. Res., 2019, 26, 30731–30754. DOI: 10.1007/s11356-019-06345-x.
- [12] PATEL V., DHARAIYA N.,RAY D., ASWAL V.K.,BAHADUR P., pH controlled size/shape in CTAB micelles with solubilized polar additives: a viscometry, scattering and spectral evaluation, Colloid. Surf. A., 2014, 455, 67–75. DOI: 10.1016/j.colsurfa.2014.04.025.
- [13] Surfactant micelle characterization using dynamic light scattering, Malvern Panalytical Application Note, 2010.
- [14] KOVÁCS Z., SAMHABER W., Characterization of nanofiltration membranes with uncharged solutes, Membrántechnika, 2008, 12, 22–36.
- 15] MAJEWSKA-NOWAK K., Fouling of hydrophilic ultrafiltration membranes applied to water recovery from dye and surfactant solutions, Environ. Prot. Eng., 2005, 31 (3–4), 229–241.
- [16] BOUSSU K., KINDTS C., VANDECASTEELE C., VAN DER BRUGGEN B., Surfactant fouling of nanofiltration membranes: measurements and mechanisms, ChemPhysChem, 2007, 8 (12), 1836–1845. DOI: 10.1002 /cphc.200700236.
- [17] JÖNSSON A., JÖNSSON B., The influence of nonionic and ionic surfactants on hydrophobic and hydrophilic ultrafiltration membranes, J. Membr. Sci., 1991, 56 (1), 49–76. DOI: 10.1016/0376-7388(91)85015-W.
- [18] TAGHADDOSI S., YEGANI R., AKBARI A., Preparation, characterization and anti-fouling properties of nanoclays embedded polypropylene mixed matrix membranes, Chem. Eng. Res. Des., 2017, 125, 35–45. DOI: 10.1016/j.cherd.2017.06.036.
- [19] NGUYEN L.A.T., Adsorption of nonionic surfactants onto ultrafiltration membranes in aqueous and organic solutions, Doctoral Thesis, Technical University of Berlin, Berlin 2015.
- [20] DIAS PEREIRA G.L.,CARDOZO-FILHO L.,JEGATHEESAN V., GUIRARDELLO R., Generalization and expansion of the Hermia model for a better understanding of membrane fouling, Membranes, 2023, 13 (3), 290. DOI: 10.3390/membranes13030290.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1e69fa3e-7ff5-4634-94e9-7aebbe28278e