Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Gas chromatography-ion mobility spectrometry (GC-IMS) is an emerging analytical technique that has the advantages of fast response, high sensitivity, simple operation, and low cost. The combination of the fast speed and resolution of GC with the high sensitivity of IMS makes GC-IMS play an important role in the detection of food volatile substances. This paper focuses on the basic principles and future development trend, and the comparative analysis of the functions, similarities and differences of GC-IMS, GC-MS and electronic nose in the detection of common volatile compounds. A comprehensive introduction to the main application of GC-IMS in food volatile components: fingerprint identification of sample differences and detection of characteristic compounds. On the basis of perfecting the spectral library, GC-IMS will have broad development prospects in food authentication, origin identification, process optimization and product classification, especially in the analysis and identification of trace volatile food flavor substances.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
35--45
Opis fizyczny
Bibliogr. 53 poz., tab., rys., wykr.
Twórcy
autor
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China
- Beijing Technology and Business University, Beijing, 100048, China
autor
- Beijing Technology and Business University, Beijing, 100048, China
autor
- Beijing Technology and Business University, Beijing, 100048, China
autor
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, 100048, China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, 100048, China
- Beijing Technology and Business University, Beijing, 100048, China
Bibliografia
- 1. Ewing, R. G.; Atkinson, D. A.; Eiceman, G. A.; Ewing, G. J. A critical review of ion mobility spectrometry for the detection of explosives and explosive related compounds. Talanta 2001, 54(3), 515–29.
- 2. Verkouteren, J. R.; Staymates, J. L. Reliability of ion mobility spectrometry for qualitative analysis of complex, multicomponent illicit drug samples. Forensic Sci. Int. 2011, 206(1–3), 190–6.
- 3. Arnanthigo, Y.; Anttalainen, O.; Safaei, Z.; Sillanpää, M. Sniff-testing for indoor air contaminants from new buildings environment detecting by aspiration-type ion mobility spectrometry. Int. J. Ion Mobil Spec. 2016, 19, 15–30.
- 4. Vautz, W.; Bödeker, B.; Baumbach, J. I.; Bader, S.; Westhoff, M.; Perl, T. An implementable approach to obtain reproducible reduced ion mobility. Int. J. Ion Mobil Spec. 2009, 12, 47–57.
- 5. Perl, T.; Carstens, E.; Hirn, A.; Quintel, M.; Vautz, W.; Nolte, J.; Jünger, M. Determination of serum propofol concentrations by breath analysis using ion mobility spectrometry. Br. J. Anaesth.2009, 103(6), 822–7.
- 6. Márquez-Sillero, I.; Aguilera-Herrador, E.; Cárdenas, S.; Valcárcel, M. Ion-mobility spectrometry for environmental analysis. Trends Anal. Chem. 2011, 30(5), 677–90.
- 7. Hernández-Mesa, M.; Ropartz, D.; García-Campaña, A. M.; Rogniaux, H.; Dervilly-Pinel, G.; Le Bizec, B. Ion mobility spectrometry in food analysis: principles, current applications and future trends. Molecules 2019, 24(15), 2706.
- 8. Ahrens, A.; Zimmermann, S. Bundled column GC-IMS – a miniaturized system for fast and sensitive on-site analytics. In 14. Dresdner Sensor-Symposium 2019; Dresden: Germany, 2019, P2.03.
- 9. Kanu, A. B.; Hill, H. H. Ion mobility spectrometry detection for gas chromatography. J. Chromatogr. A. 2008, 1177(1), 12–27.
- 10. Cohen, M. J.; Karasek, F. W. Plasma chromatography™—a new dimension for gas chromatography and mass spectrometry. J. Chromatogr. Sci. 1970, 8(6), 330–7.
- 11. Karasek, F. W.; Keller, R. A. Gas chromatograph/plasma chromatograph interface and its performance in the detection of musk ambrette. J. Chromatogr. Sci. 1972, 10(10), 626–8.
- 12. Baim, M. A.; Hill, H. H., Jr. Effects of contamination on ion mobility detection after gas chromatography. J. Chromatogr. A 1984, 299(2), 309–19.
- 13. St Louis, R. H.; Siems, W. F.; Hill, H. H., Jr. Evaluation of direct axial sample introduction for ion mobility detection after capillary gas chromatography. J. Chromatogr. A 1989, 479(2), 221–31.
- 14. Sielemann, S.; Baumbach, J. I.; Schmidt, H.; Pilzecker, P. Quantitative analysis of benzene, toluene, and m-xylene with the use of a UV-ion mobility spectrometer. Field Anal. Chem. Technol. 2000, 4(4), 157–69.
- 15. Stefanie, S.; Xie, Z.; Schmidt, H.; Jörg, I. B. Determination of MTBE next to benzene, toluene and Xylene within 90s using GC/IMS with multi-capillary column. Researchgate 2001.
- 16. Miller, R. A.; Eiceman, G. A.; Nazarov, E. G.; King, A. T. A novel micromachined high-field asymmetric waveform-ion mobility spectrometer. Sens. Actuators, B. Chem. 2000, 67(3), 300–6.
- 17. Aguilera-Herrador, E.; Cárdenas, S.; Ruzsanyi, V.; Sielemann, S.; Valcárcel, M. Evaluation of a new miniaturized ion mobility spectrometer and its coupling to fast gas chromatography multicapillary columns. J. Chromatogr. A. 2008, 1214(1–2), 143–50.
- 18. Baumbach, J. I.; Eiceman, G. A. Ion mobility spectrometry: arriving on site and moving beyond a low profile. Appl. Spectrosc. 1999, 53(9), 338A–55A.
- 19. Borsdorf, H.; Eiceman, G. A. Ion mobility spectrometry: principles and applications. Appl. Spectrosc. Rev. 2006, 41(4), 323–75.
- 20. Tabrizchi, M. Temperature effects on resolution in ion mobility spectrometry. Talanta 2004, 62(1), 65–70.
- 21. Arroyo-Manzanares, N.; García-Nicolás, M.; Castell, A.; Campillo, N.; Viñas, P.; López-García, I.; Hernández-Córdoba, M. Untargeted headspace gas chromatography – ion mobility spectrometry analysis for detection of adulterated honey. Talanta 2019, 205, 120123.
- 22. Garrido-Delgado, R.; Dobao-Prieto, M. D. M.; Arce, L.; Valcárcel, M. Determination of volatile compounds by GC–IMS to assign the quality of virgin olive oil. Food Chem. 2015, 187, 572–9.
- 23. Valli, E.; Panni, F.; Casadei, E.; Barbieri, S.; Cevoli, C.; Bendini, A.; García-González, D. L.; Gallina Toschi, T. An HS-GC-IMS method for the quality classification of virgin olive oils as screening support for the panel test. Foods 2020, 9(5), 657.
- 24. Jin, J.; Zhao, M.; Zhang, N.; Jing, T.; Liu, H.; Song, C. Stable isotope signatures versus gas chromatography-ion mobility spectrometry to determine the geographical origin of Fujian Oolong tea (Camellia sinensis) samples. Eur. Food Res. Technol. 2020, 246, 955–64.
- 25. Feng, D.; Wang, J.; Ji, X.; Min, W.; Yan, W. HS-GC-IMS detection of volatile organic compounds in yak milk powder processed by different drying methods. LWT Food Sci. Technol. 2021, 141, 110855.
- 26. Garrido-Delgado, R.; Arce, L.; Valcárcel, M. Multi-capillary column-ion mobility spectrometry: a potential screening system to differentiate virgin olive oils. Anal. Bioanal. Chem. 2012, 402, 489–98.
- 27. Garrido-Delgado, R.; Dobao-Prieto, M. D. M.; Arce, L.; Valcárcel, M. Determination of volatile compounds by GC–IMS to assign the quality of virgin olive oil. Food Chem. 2015, 187, 572–9.
- 28. Gerhardt, N.; Birkenmeier, M.; Sanders, D.; Rohn, S.; Weller, P. Resolution-optimized headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS) for non-targeted olive oil profiling. Anal. Bioanal. Chem. 2017, 409, 3933–42.
- 29. Schwolow, S.; Gerhardt, N.; Rohn, S.; Weller, P. Data fusion of GC-IMS data and FT-MIR spectra for the authentication of olive oils and honeys—is it worth to go the extra mile? Anal. Bioanal. Chem. 2019, 411, 6005–19.
- 30. Chen, T.; Gu, H.; Chen, M.; Lu, D.; Chen, B. Study on flavor changes in refining process of sunflower oil based on gas chromatography-ion mobility spectrometry. Food Sci. 2019, 40(18), 312–6.
- 31. Chen, T.; Qi, X.; Chen, M.; Chen, B. Gas chromatography-ion mobility spectrometry detection of odor fingerprint as markers of rapeseed oil refined grade. J. Anal. Methods Chem. 2019, 2019, 3163204.
- 32. Chen, T.; Wu, Z.; Wang, Z.; Lu, D.; Chen, B. Identification of meat species by gas chromatography-ion mobility spectrometry and chemometrics. J. Chin. Inst. Food Sci. Technol. 2019, 19(7), 221–6.
- 33. Zeng, X.; Liu, J.; Dong, H.; Bai, W.; Yu, L.; Li, X. Variations of volatile flavour compounds in cordyceps militaris chicken soup after enzymolysis pretreatment by SPME combined with GC-MS, GC 3 GC-TOF MS and GC-IMS. Int. J. Food Sci. Technol. 2020, 55(2), 509–16.
- 34. Arroyo-Manzanares, N.; Martín-Gómez, A.; Jurado-Campos, N.; Garrido-Delgado, R.; Arce, C.; Arce, L. Target vs spectral fingerprint data analysis of Iberian ham samples for avoiding labelling fraud using headspace – gas chromatography–ion mobility spectrometry. Food Chem. 2018, 246, 65–73.
- 35. Li, M.; Yang, R.; Zhang, H.; Wang, S.; Chen, D.; Lin, S. Development of a flavor fingerprint by HS-GC–IMS with PCA for volatile compounds of Tricholoma matsutake singer. Food Chem. 2019, 290, 32–9.
- 36. Hu, X.; Wang, R.; Guo, J.; Ge, K.; Li, G.; Fu, F.; Ding, S.; Shan, Y. Changes in the volatile components of candied kumquats in different processing methodologies with headspace–gas chromatography–ion mobility spectrometry. Molecules 2019, 24(17), 3053.
- 37. Vandendriessche, T.; Keulemans, J.; Geeraerd, A.; Nicolai, B. M.; Hertog, M. L. A. T. M. Evaluation of fast volatile analysis for detection of Botrytis cinerea infections in strawberry. Food Microbiol. 2012, 32(2), 406–14.
- 38. Han, X.; Peng, Q.; Yang, H.; Hu, B.; Shen, C.; Tian, R. Influence of different carbohydrate sources on physicochemical properties and metabolites of fermented greengage (Prunus mume) wines. LWT Food Sci. Technol. 2020, 121, 108929.
- 39. Chen, T.; Qi, X.; Chen, M.; Lu, D.; Chen, B. Discrimination of Chinese yellow wine from different origins based on flavor fingerprint. Acta Chromatogr. 2020, 32(2), 139–44.
- 40. Li, S.; Yang, H.; Tian, H.; Zou, J.; Li, J. Correlation analysis of the age of brandy and volatiles in brandy by gas chromatography-mass spectrometry and gas chromatography-ion mobility spectrometry. Microchem. J. 2020, 157, 104948.
- 41. Li, H.; Jiang, D.; Liu, W.; Yang, Y.; Zhang, Y.; Jin, C.; Sun, S. Comparison of fermentation behaviors and properties of raspberry wines by spontaneous and controlled alcoholic fermentations. Food Res. Int. 2020, 128, 108801.
- 42. Jia, S.; Li, Y.; Zhuang, S.; Sun, X.; Zhang, L.; Shi, J.; Hong, H.; Luo, Y. Biochemical changes induced by dominant bacteria in chill-stored silver carp (Hypophthalmichthys molitrix) and GC-IMS identification of volatile organic compounds. Food Microbiol. 2019, 84, 103248.
- 43. Zhang, Q.; Ding, Y.; Gu, S.; Zhu, S.; Zhou, X.; Ding, Y. Identification of changes in volatile compounds in dry-cured fish during storage using HS-GC-IMS. Food Res. Int. 2020, 137, 109339.
- 44. Aliaño-González, M. J.; Ferreiro-González, M.; Espada-Bellido, E.; Palma, M.; Barbero, G. F. A screening method based on headspace-ion mobility spectrometry to identify adulterated honey. Sensors 2019, 19(7), 1621.
- 45. Wang, X.; Yang, S.; He, J.; Chen, L.; Zhang, J.; Jin, Y.; Zhou, J.; Zhang, Y. A green triple-locked strategy based on volatile-compound imaging, chemometrics, and markers to discriminate winter honey and sapium honey using headspace gas chromatography-ion mobility spectrometry. Food Res. Int. 2019, 119, 960–7.
- 46. Cavanna, D.; Zanardi, S.; Dall'Asta, C.; Suman, M. Ion mobility spectrometry coupled to gas chromatography: a rapid tool to assess eggs freshness. Food Chem. 2019, 271, 691–6.
- 47. Gallegos, J.; Arce, C.; Jordano, R.; Arce, L.; Medina, L. M. Target identification of volatile metabolites to allow the differentiation of lactic acid bacteria by gas chromatography-ion mobility spectrometry. Food Chem. 2017, 220, 362–70.
- 48. Vautz, W.; Baumbach, J. I.; Jung, J. Beer fermentation control using ion mobility spectrometry - results of a pilot study. J. Inst. Brew. 2006, 112(2), 157–64.
- 49. Pereira, C. S.; Pires, A.; Valle, M. J.; Boas, L. V.; Marques, J. J. F.; San Romão, M. V. Role of Chrysonilia sitophila in the quality of cork stoppers for sealing wine bottles. J. Ind. Microbiol. Biotechnol. 2000, 24(4), 256–61.
- 50. Marquez-Sillero, I.; Cardenas, S.; Valcarcel, M. Direct determination of 2,4,6-tricholoroanisole in wines by single-drop ionic liquid microextraction coupled with multicapillary column separation and ion mobility spectrometry detection. J. Chromatogr. A. 2011, 1218(42), 7574–80.
- 51. Kermani, M.; Jafari, M. T.; Saraji, M. Porous magnetized carbon sheet nanocomposites for dispersive solid-phase microextraction of organophosphorus pesticides prior to analysis by gas chromatography-ion mobility spectrometry. Microchim. Acta 2019, 186, 88.
- 52. Jafari, M. T.; Saraji, M.; Sherafatmand, H. Polypyrrole/montmorillonite nanocomposite as a new solid phase microextraction fiber combined with gas chromatography–corona discharge ion mobility spectrometry for the simultaneous determination of diazinon and fenthion organophosphorus pesticides. Anal. Chim. Acta 2014, 814, 69–78.
- 53. Snyder, A. P.; Harden, C. S.; Davis, D. M.; Shoff, D. B.; Maswadeh, W. M. Hand-portable gas chromatography-ion mobility spectrometer for the determination of the freshness of fish. In Third International Workshop on Ion Mobility Spectrometry; NASA. Johnson Space Center, Houston: US, 1995.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1e676f35-3b8b-4680-a504-4ae4f27e9d2b