PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Frequency and temperature dependent transport properties of NiCuZn ceramic oxide

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A polycrystalline sample of ceramic oxide Ni0:27Cu0:10Zn0:63Fe2O4 was prepared by the solid state reaction method. The sintered sample was well polished to remove any oxide layer formed during sintering and the two surfaces of the pellet were coated with a silver paste as a contact material. Among dielectric properties, complex dielectric constant (ε* = ε' - jε"), loss tangent (tanδ) and ac conductivity (σac) in the frequency range of 20 Hz to 2 MHz were analyzed in the temperature range of 303 to 498 K using a Wayne Kerr impedance analyzer (model No. 6500B). The experimental results indicate that ε', ε", tanδ and σacdecrease with an increase in frequency and increase with increasing temperature. The transition temperature, as obtained from dispersion curve of ε', shifts towards higher temperature with an increase in frequency. The variation of dielectric properties with frequency and temperature shows the dispersion behavior which is explained in the light of Maxwell-Wagner type of interfacial polarization in accordance with the Koop’s phenomenological theory. The frequency dependent conductivity results satisfy the Jonscher’s power law, σT (ω) = σ(o)+Aωn, and the results show the occurrence of two types of conduction process at elevated temperature: (i) low frequency conductivity, due to long-range ordering (frequency independent, region I), (ii) mid frequency conductivity at the grain boundaries (region II, dispersion) and (iii) high frequency conductivity at the grain interior due to the short-range hopping mechanism (frequency independent plateau, region III).
Wydawca
Rocznik
Strony
259--267
Opis fizyczny
Bibliogr. 36 poz., rys.
Twórcy
autor
  • Department of Physics, Chittagong University of Engineering and Technology, Bangladesh
  • Department of Physics, Bangladesh University of Engineering and Technology, Bangladesh
Bibliografia
  • [1] K¨O SEO˘GLU Y., KAVAS H., J. Nanosci. Nanotechnol., 8 (2008), 584.
  • [2] LIPARE A.Y., VASAMBEKAR P.N., VAINGANKAR A.S., J. Magn. Magn. Mater., 279 (2004), 160.
  • [3] ZI Z., SUN Y., ZHU X., YANG Z., DAI J., SONG W., J. Magn. Magn. Mater., 321 (2009), 1251.
  • [4] PENG J., HOJAMBERDIEV M., XU Y., CAO B., WANG J., WU H., J. Magn. Magn. Mater., 323 (2011) 133.
  • [5] VADIVEL M., RAMESH BABU R., SETHURAMAN K., RAMAMURTHI K., ARIVANANDHAN M., J. Magn. Magn. Mater., 362 (2014), 122.
  • [6] VERWEY E.J., HAAIJAM P.W., ROMEYN F.C., VAN OOSTERHOUT G.W., Philips Res. Rep., 5 (1950), 173.
  • [7] BATOO K.M., KUMAR S., PRAKASH R., ALIMUDDIN, SONG I., CHUNG H., JEONG H., LEE C.G., J. Cent. South Univ., 17 (2010), 1129.
  • [8] KUMAR S., FAREA A.M.M., BATOO K.M., LEE C.G., KOO B.H., YOUSEF A., ALIMUDDIN, Physica B, 403 (2008), 3604.
  • [9] BATOO K.M., KUMAR S., LEE C.G., ALIMUDDIN, J. Alloy. Compd., 480 (2009), 596.
  • [10] YAMAMOTO Y., MAKINO, J. Magn. Magn. Mater., 133 (1994), 500.
  • [11] FAREA A.M.M., KUMAR S., BATOO K.M., LEE C.G., KOO B.H., YOUSEF A., J. Alloy. Compd., 469 (2009), 451.
  • [12] BAMMANNAVAR B.K., NAIK L.R., CHOUGULE B.K., J. Appl. Phys., 104 (2008), 064123.
  • [13] KUMAR S., ALIMUDDIN, KUMAR R., DOGRA A., REDDY V.R., BANERJEE A., J. Appl. Phys., 99 (2006), 08M910.
  • [14] PATIL R.S., KAKATKAR S.V., PATIL S.A., MASKAR P.K., SAWANT S.R., Phys. Status Solidi A, 126 (1991), K185.
  • [15] IWAUCHI K., Jpn. J. Appl. Phys., 10 (1971), 1520.
  • [16] VERWEY E.J.W., HAAYMAN W., Physica, 8 (1941), 979.
  • [17] COLE K.S., COLE R.H., J. Chem. Phys., 9 (1941), 341.
  • [18] ANDERSON J.C., Dielectrics, Spottiswoode, Ballantyne & Co Ltd., London and Colchester, 1964.
  • [19] SMITH J., WIJN H.P.J., Ferrites, Philips Technical Library, Eindhoven, The Netherlands, 1965.
  • [20] MAXWELL J., A Treatise on Electricity and Magnetism, Clarendon Press, Oxford, London, 1982.
  • [21] WANGNER K., Ann. Phys.-Berlin, 40 (1913), 817.
  • [22] KOOPS C.G., Phys. Rev., 83 (1951), 121.
  • [23] KUMAR B., SRIVASTAVA G., J. Appl. Phys., 75 (1994), 6115.
  • [24] POPANDIAN N., BALAYA P., NARAYANASAMY A., J. Phys.-Condens. Mat., 14 (2002), 3221.
  • [25] ANG C., YU Z., CROSS L.E., Phys. Rev. B, 62 (2000), 228.
  • [26] AHMED M.A., ATEIA E., SALEM F.M., Physica B, 381 (2006), 144.
  • [27] VERMA A., KHAKUR O.P., PRAKASH C., GOEL T.C., MENDIRATTA R.G., Mater. Sci. Eng. B-Adv., 116 (2005), 1.
  • [28] EL HITI M.A., J. Magn. Magn. Mater., 192 (1999), 305.
  • [29] DEVAN R.S., KOLEKAR Y.D., CHOUGULE B.K., J. Phys.-Condens. Mat., 18 (2006), 9809.
  • [30] KAMBA S., BOVTUN V., PETZELT J., RYCHETSKY I., MIZARAS R., BRILINGAS A., BANYS J., GRIGAS J., KOSEC M., J. Phys.-Condens. Mat., 12 (2000), 497.
  • [31] DAS B.P., MAHAPATRA P.K., CHOUDHARY R.N.P., J. Mater. Sci.-Mater. El., 15 (2004), 107.
  • [32] KANAGATHARA N., ANBALAGAN G., RENGANATHAN N.G., Int. J. Sci. Tech., 1 (2011), 33.
  • [33] JONSCHER A.K., Nature, 264 (1977), 673.
  • [34] MOTT N.F., DAVIS E.A., Electronic Processes in Noncrystalline Materials, Clarendon Press, Oxford, 1979.
  • [35] GOODENOUGH J.B., Mater. Res. Bull., 8 (1973), 423.
  • [36] PRADHAN D.K., MISRA P., PULI V.S., SAHOO S., PRADHAN D.K., KATIYAR R.S., J. Appl. Phys., 115 (2014), 243904.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1e672b5e-6187-49d6-9bc5-e4f0c36c0f61
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.