PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We present PhysECG: a physically motivated projection of the 12 lead electrocardiogram, supported by a deep learning model trained on 21,799 recordings from the PTB-XL database and discuss its feasibility. The method allows to evaluate the epicardial activity (inverse problem of ECG imaging) and, in particular, to distinguish left and right ventricular activity, with statistical spread related to localization of the septum. The observed dyssynchrony resembles other experimental results. The foundations of the method are based on the molecular theory of biopotentials. The heart’s activity in view of the method is decomposed into two processes: the passage of the electric activation wavefront and the response of cardiomyocytes. We introduce the idea of the electrode-resolved activity function, which represents the mass of the ventricle in Phase 0 of action potential within the lead field of each electrode. The computations are fast and robust, with excellent convergence. We present the quality metrics for the reconstruction based on the model on the testing set selected from the PTB database. In order to prove feasibility, we present and discuss two healthy controls: male and female, and two pathologies: right bundle branch block, and anterior myocardial infarction. The results obtained using PhysECG seem to be in accordance with the changes evoked by pathology, which has to be confirmed by subsequent clinical studies. The method is based on ECG, and does not require reconstruction of body geometry, which presents an affordable solution for low and middle-income countries where access to imaging is limited.
Twórcy
  • Faculty of Physics, Warsaw University of Technology, Warsaw, Poland
  • Faculty of Physics, Warsaw University of Technology, Warsaw, Poland
  • Children’s Memorial Health Institute, Warsaw, Poland
autor
  • Faculty of Physics, Warsaw University of Technology, Warsaw, Poland
  • Faculty of Physics, Warsaw University of Technology, Warsaw, Poland
  • Faculty of Physics, Warsaw University of Technology, Warsaw, Poland
Bibliografia
  • [1] Byrne RA, Rossello X, Coughlan JJ, Barbato E, et al. 2023 ESC Guidelines for the management of acute coronary syndromes. Eur Heart J 2023;44(38):3720-826. http://dx.doi.org/10.1093/eurheartj/ehad191.
  • [2] Kashou AH, Noseworthy PA, Beckman TJ, et al. Impact of computer-interpreted ECGs on the accuracy of healthcare professionals. Curr Probl Cardiol 2023;48(11):101989. http://dx.doi.org/10.1016/j.cpcardiol.2023.101989.
  • [3] Ose B, Sattar Z, Gupta A, Toquica C, Harvey C, Noheria A. Artificial intelligence interpretation of the electrocardiogram: A state-of-the-art review. Curr Cardiol Rep 2024;26(6):561-80. http://dx.doi.org/10.1007/s11886-024-02062-1.
  • [4] Niemczyk S, Fiegler-Rudol J, Migas M, Wągrowska K, Hochuł D, Talaska J, et al. Artificial intelligence in ECG analysis - future or present? Emerg Med Serv 2024;11(2):105-9. http://dx.doi.org/10.36740/emems202402106.
  • [5] Holmstrom L, Chugh H, Nakamura K, Bhanji Z, Seifer M, Uy-Evanado A, et al. An ECG-based artificial intelligence model for assessment of sudden cardiac death risk. Commun Med 2024;4(1). http://dx.doi.org/10.1038/s43856-024-00451-9.
  • [6] Kolk MZ, Ruipérez-Campillo S, Wilde AA, Knops RE, Narayan SM, Tjong FV. Prediction of sudden cardiac death using artificial intelligence: Current status and future directions. Hear Rhythm 2024. http://dx.doi.org/10.1016/j.hrthm.2024.09.003.
  • [7] Bacharova L, Chevalier P, Gorenek B, Jons C, Li YG, Locati ET, et al. ISE/ISHNE expert consensus statement on the ECG diagnosis of left ventricular hypertrophy: The change of the paradigm. Ann Noninvasive Electrocardiol 2023;29(1).
  • [8] Maron BJ, Rowin EJ, Maron MS. Global burden of hypertrophic cardiomyopathy. JACC: Hear Fail 2018;6(5):376-8. http://dx.doi.org/10.1016/j.jchf.2018.03.004.
  • [9] Martinez M. Revolutionizing cardiology: AI in ECG analysis paves the way for better disease detection and treatment. NEJM AI 2024. URL https://ai.nejm.org/doi/full/10.1056/AI-S2400629.
  • [10] Cheng Z, Zhu K, Tian Z, Zhao D, Cui Q, Fang Q. The findings of electrocar-diography in patients with cardiac amyloidosis. Ann Noninvasive Electrocardiol 2012;18(2):157-62. http://dx.doi.org/10.1111/anec.12018.
  • [11] Collet JP, Thiele H, Barbato E, Bauersachs J, Dendale P, Edvardsen T, et al. 2020 ESC guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur Heart J 2021;42. http://dx.doi.org/10.1093/eurheartj/ehaa575.
  • [12] Al-Khatib SM, Stevenson WG, Ackerman MJ, Bryant WJ, Callans DJ, Curtis AB, et al. 2017 AHA/ACC/HRS Guideline for Management of Patients With Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society. Circulation 2017.
  • [13] Priori SG, Blomstrom-Lundqvist C, Mazzanti A, Blom N, Borggrefe M, Camm J, et al. [2015 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death]. G Ital Cardiol (Rome) 2016;17(2):108-70.
  • [14] Anderson RD, Kumar S, Parameswaran R, Wong G, Voskoboinik A, Sug-umar H, et al. Differentiating right-and left-sided outflow tract ventricular arrhythmias: Classical ECG signatures and prediction algorithms. Circulation 2019;12:e007392.
  • [15] Frisk C, Das S, Eriksson MJ, Walentinsson A, Corbascio M, Hage C, et al. Cardiac biopsies reveal differences in transcriptomics between left and right ventricle in patients with or without diagnostic signs of heart failure. Sci Rep 2024;14:5811. http://dx.doi.org/10.1038/s41598-024-56025-1.
  • [16] Sedova KA, van Dam PM, Blahova M, Necasova L, Kautzner J. Localization of the ventricular pacing site from BSPM and standard 12-lead ECG: a comparison study. Sci Rep 2023;13(1).
  • [17] Cluitmans M, Brooks DH, MacLeod R, Dössel O, Guillem MS, van Dam PM, et al. Validation and opportunities of electrocardiographic imaging: From technical achievements to clinical applications. Front Physiol 2018;9. http://dx.doi.org/10.3389/fphys.2018.01305.
  • [18] Li L, Camps J, Rodriguez B, Grau V. Solving the inverse problem of electrocar-diography for cardiac digital twins: A survey. 2024, http://dx.doi.org/10.48550/ARXIV.2406.11445.
  • [19] Bear LR, LeGrice IJ, Sands GB, Lever NA, Loiselle DS, Paterson DJ, et al. How accurate is inverse electrocardiographic mapping?: A systematic in vivo evaluation. Circulation: Arrhythm Electrophysiol 2018;11(5). http://dx.doi.org/10.1161/circep.117.006108.
  • [20] Potyagaylo D, Chmelevsky M, Dam PV, Budanova M, Zubarev S, Treshkur T, et al. ECG adapted fastest route algorithm to localize the ectopic excitation origin in CRT patients. Front Physiol 2019;10. http://dx.doi.org/10.3389/fphys.2019.00183.
  • [21] Bibbins-Domingo K, Helman A. Improving representation in clinical trials and research: Building research equity for women and underrepresented groups. 2022, http://dx.doi.org/10.17226/26479.
  • [22] Buchner T. On the physical nature of biopotentials, their propagation and measurement. Phys A 2019;525:85-95. http://dx.doi.org/10.1016/j.physa.2019.03.056.
  • [23] Buchner T, Zajdel M, Peczalski K, Nowak P. Finite velocity of ECG signal propagation: preliminary theory, results of a pilot experiment and consequences for medical diagnosis. Sci Rep 2023;13(1). http://dx.doi.org/10.1038/s41598-023-29904-2.
  • [24] Peczalski K, Sobiech J, Buchner T, Kornack T, Foley E, Janczak D, et al. Syn-chronous recording of magnetocardiographic and electrocardiographic signals. Sci Rep 2024;14(1). http://dx.doi.org/10.1038/s41598-024-54126-5.
  • [25] Scharf G, Dang L, Scharf C. Electrophysiology of living organs from first principles. 2010, http://dx.doi.org/10.1023/A:1004600603161, arXiv:arXiv:bio-ph/1006.3453.
  • [26] Malmivuo J, Plonsey R. Bioelectromagnetism-Principles and applications of bioelectric and biomagnetic fields. New York, 1995: Oxford University Press; 1995.
  • [27] Hossenfelder S. Lost in math. New York, NY: Basic Civitas Books; 2019.
  • [28] Rudy Y. The forward problem of electrocardiography revisited. Circ Arrhythm Electrophysiol 2015;8(3):526-8.
  • [29] Cluitmans M. Noninvasive reconstruction of cardiac electrical activity: Mathe-matical innovation, in vivo validation and human application [Ph.D. thesis], Maastricht University; 2016.
  • [30] Franz M. Current status of monophasic action potential recording: theories, measurements and interpretations. Cardiovasc Res 1999;41(1):25-40.
  • [31] Barr RC, Ramsey M, Spach MS. Relating epicardial to body surface potential distributions by means of transfer coefficients based on geometry measurements. IEEE Trans Biomed Eng 1977;(1):1-11.
  • [32] Strzałkowski J, Polak P, Buchner T. Capacitive coupling between the heart and tissue and its mathematical representation in future problems. Bio- Algorithms Med- Syst 2024;20(1):159-68. http://dx.doi.org/10.5604/01.3001.0054.9268.
  • [33] Durrer D, van Dam RT, Freud GE, Janse MJ, Meijler FL, Arzbaecher RC. Total excitation of the isolated human heart. Circulation 1970;41(6):899-912.
  • [34] Orini M, Taggart P, Srinivasan N, Hayward M, Lambiase PD. Interactions between activation and repolarization restitution properties in the intact human heart: In-vivo whole-heart data and mathematical description. In: Panfilov AV, editor. PLoS One 2016;11(9):e0161765. http://dx.doi.org/10.1371/journal.pone.0161765.
  • [35] Fast VG, Kléber AG. Role of wavefront curvature in propagation of cardiac impulse. Cardiovasc Res 1997;33(2):258-71. http://dx.doi.org/10.1016/s0008-6363(96)00216-7.
  • [36] Hanson B, Sutton P, Elameri N, Gray M, Critchley H, Gill JS, et al. Interaction of activation-repolarization coupling and restitution properties in humans. Cir-culation: Arrhythm Electrophysiol 2009;2(2):162-70. http://dx.doi.org/10.1161/circep.108.785352.
  • [37] Qu Z, Xie F, Garfinkel A, Weiss JN. Origins of spiral wave meander and breakup in a two-dimensional cardiac tissue model. Ann Biomed Eng 2000;28(7):755-71. http://dx.doi.org/10.1114/1.1289474.
  • [38] Weiss JN, Garfinkel A, Karagueuzian HS, Qu Z, Chen PS. Chaos and the transition to ventricular fibrillation: A new approach to antiarrhythmic drug evaluation. Circulation 1999;99(21):2819-26. http://dx.doi.org/10.1161/01.cir.99.21.2819.
  • [39] Jabr RI, Hatch FS, Salvage SC, Orlowski A, Lampe PD, Fry CH. Regulation of gap junction conductance by calcineurin through cx43 phosphorylation: implications for action potential conduction. Pflügers Arch-Eur J Physiol 2016;468(11-12):1945-55. http://dx.doi.org/10.1007/s00424-016-1885-7.
  • [40] Cuellar AA, Lloyd CM, Nielsen PF, Bullivant DP, Nickerson DP, Hunter PJ. An overview of CellML 1.1, a biological model description language. Simulation 2003;79(12):740-7. http://dx.doi.org/10.1177/0037549703040939.
  • [41] ten Tusscher KHWJ, Noble D, Noble PJ, Panfilov AV. A model for human ventricular tissue. Am J Physiol Hear Circ Physiol 2004;286(4):H157389.
  • [42] Luo CH, Rudy Y. A dynamic model of the cardiac ventricular action potential. I. Simulations of ionic currents and concentration changes. Circ Res 1994;74(6):1071-96.
  • [43] Clerx M, Collins P, de Lange E, Volders PG. Myokit: A simple interface to cardiac cellular electrophysiology. Prog Biophys Mol Biol 2016;120(1-3):100-14. http://dx.doi.org/10.1016/j.pbiomolbio.2015.12.008.
  • [44] Gargiulo GD, McEwan AL, Bifulco P, Cesarelli M, Jin C, Tapson J, et al. Towards true unipolar ECG recording without the Wilson central terminal (preliminary results). Physiol Meas 2013;34(9):991.
  • [45] Kappadan V, Sohi A, Parlitz U, Luther S, Uzelac I, Fenton F, et al. Optical mapping of contracting hearts. J Physiol 2023;601(8):1353-70. http://dx.doi.org/10.1113/jp283683.
  • [46] Okamoto Y, Mashima S. The zero potential and Wilson’s central terminal in electrocardiography. Bioeletrochem Bioenerg 1998;47(2):291-5. http://dx.doi.org/10.1016/S0302-4598(98)00201-3.
  • [47] Wilson FN, Johnston FD, Macleod A, Barker PS. Electrocardiograms that represent the potential variations of a single electrode. Am Heart J 1934;9(4):447-58. http://dx.doi.org/10.1016/S0002-8703(34)90093-4.
  • [48] Ansel J, Yang E, He H, Gimelshein N, et al. PyTorch 2: Faster machine learning through dynamic python bytecode transformation and graph compilation. In: Proceedings of the 29th ACM international conference on architectural support for programming languages and operating systems, vol. 2. New York, NY, USA: Association for Computing Machinery; 2024, p. 929-47. http://dx.doi.org/10.1145/3620665.3640366.
  • [49] Wagner P, Strodthoff N, Bousseljot R-D, Samek W, Schaeffter T. PTB-XL, a large publicly available electrocardiography dataset. 2022, http://dx.doi.org/10.13026/KFZX-AW45.
  • [50] Makowski D, Pham T, Lau ZJ, Brammer JC, Lespinasse F, Pham H, et al. NeuroKit2: A Python toolbox for neurophysiological signal processing. Behav Res Methods 2021;53(4):1689-96. http://dx.doi.org/10.3758/s13428-020-01516-y.
  • [51] Bousseljot R-D, Kreiseler D, Schnabel A. The PTB diagnostic ECG database. Biomed Tech (Biomed Eng) 1995;40(1):317-8.
  • [52] Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, et al. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods 2020;17:261-72. http://dx.doi.org/10.1038/s41592-019-0686-2.
  • [53] Pardee H. An electrocardiographic sign of coronary artery obstruction. Arch Intern Med 1920;26(2):244-57. http://dx.doi.org/10.1001/archinte.1920.00100020113007.
  • [54] Waddingham PH, Mangual JO, Orini M, Badie N, Muthumala A, Sporton S, et al. Electrocardiographic imaging demonstrates electrical synchrony improvement by dynamic atrioventricular delays in patients with left bundle branch block and preserved atrioventricular conduction. EP Eur 2022;25(2):536-45. http://dx.doi.org/10.1093/europace/euac224.
  • [55] Elliott MK, Blauer J, Mehta VS, Sidhu BS, Gould J, Jackson T, et al. Comparison of electrical dyssynchrony parameters between electrocardiographic imaging and a simulated ECG belt. J Electrocardiol 2021;68:117-23. http://dx.doi.org/10.1016/j.jelectrocard.2021.08.003.
  • [56] Verstappen AA, Hautvast R, Jurak P, Bracke FA, Rademakers LM. Ventricular dyssynchrony imaging, echocardiographic and clinical outcomes of left bundle branch pacing and biventricular pacing. Indian Pacing Electrophysiol J 2024;24(3):140-6. http://dx.doi.org/10.1016/j.ipej.2024.04.007.
  • [57] Nguyên UC, Rijks JHJ, Plesinger F, Rademakers LM, Luermans J, Smits KC, et al. Ultra-high-frequency ECG in cardiac pacing and cardiac resynchronization therapy: From technical concept to clinical application. J Cardiovasc Dev Dis 2024;11(3):76. http://dx.doi.org/10.3390/jcdd11030076.
  • [58] Jurak P, Halamek J, Meluzin J, Plesinger F, Postranecka T, Lipoldova J, et al. Ventricular dyssynchrony assessment using ultra-high frequency ECG technique. J Interv Card Electrophysiol: Int J Arrhythm Pacing 2017;49. http://dx.doi.org/10.1007/s10840-017-0268-0.
  • [59] Isaksen JL, Ghouse J, Graff C, Olesen MS, Holst AG, Pietersen A, et al. Electrocardiographic T-wave morphology and risk of mortality. Int J Cardiol 2021;328:199-205. http://dx.doi.org/10.1016/j.ijcard.2020.12.016.
  • [60] Krijger Juárez C, Amin AS, Offerhaus JA, Bezzina CR, Boukens BJ. Cardiac repolarization in health and disease. JACC: Clin Electrophysiol 2023;9(1):124-38. http://dx.doi.org/10.1016/j.jacep.2022.09.017.
  • [61] Xue J, Chen Y, Han X, Gao W. Electrocardiographic morphology changes with different type of repolarization dispersions. J Electrocardiol 2010;43(6):553-9. http://dx.doi.org/10.1016/j.jelectrocard.2010.07.011.
  • [62] Ikeda T. Right bundle branch block: Current considerations. Curr Cardiol Rev 2021;17(1):24-30. http://dx.doi.org/10.2174/1573403x16666200708111553.
  • [63] Calle S, Timmermans F, De Pooter J. Defining left bundle branch block according to the new 2021 European Society of Cardiology criteria. Neth Hear J 2022;30(11):495-8. http://dx.doi.org/10.1007/s12471-022-01697-5.
  • [64] Kloosterman M, Loh KP, van Veen TAB. Left bundle branch block-induced cardiomyopathy: A distinctive form of cardiomyopathy that might require a dedicated form of treatment. Hear Rhythm 2024;21(8):1380-1.
  • [65] Pipberger HV, Bialek SM, Perloff JK, Schnaper HW. Correlation of clinical information in the standard 12-lead ECG and in a corrected orthogonal 3-lead ECG. Am Heart J 1961;61(1):34-43.
  • [66] Miller WT, Geselowitz DB. Simulation studies of the electrocardiogram. I. The normal heart. Circ Res 1978;43(2):301-15.
  • [67] Kaufman W, Johnston FD. The electrical conductivity of the tissues near the heart and its bearing on the distribution of the cardiac action currents. Am Heart J 1943;26(1):42-54. http://dx.doi.org/10.1016/S0002-8703(43)90050-X.
  • [68] Wilson FN, Macleod AG, Barker PS. The distribution of the action currents produced by heart muscle and other excitable tissues immersed in extensive conducting media. J Gen Physiol 1933;16(3):423-56.
  • [69] Frank E. General theory of heart-vector projection. Circ Res 1954;2(3):258-70.
  • [70] Roth BJ. The electrical conductivity of tissues. In: Bronzino D, editor. The biomedical engineering handbook: Second edition. Boca Raton: CRC Press LLC; 2000.
  • [71] Brody DA. A theoretical analysis of intracavitary blood mass influence on the heart-lead relationship. Circ Res 1956;4(6):731-8.
  • [72] Barnard AC, Duck IM, Lynn MS. The application of electromagnetic theory to electrocardiology. I. Derivation of the integral equations. Biophys J 1967;7(5):443-62.
  • [73] van Oosterom A. Genesis of the T wave as based on an equivalent surface source model. J Electrocardiol 2001;34 Suppl:217-27.
  • [74] Potse M, Vinet A, Opthof T, Coronel R. Validation of a simple model for the morphology of the T wave in unipolar electrograms. Am J Physiol Hear Circ Physiol 2009;297(2):792-801.
  • [75] Potse M. Mathematical modeling and simulation of ventricular activation se-quences: implications for cardiac resynchronization therapy. J Cardiovasc Transl Res 2012;5(2):146-58.
  • [76] Oostendorp TF, van Dessel PF, Coronel R, Belterman C, Linnenbank AC, van Schie IH, et al. Noninvasive detection of epicardial and endocardial activity of the heart. Neth Hear J 2011;19(11):488-91.
  • [77] Geselowitz D. On the theory of the electrocardiogram. Proc IEEE 1989;77(6):857-76.
  • [78] Cluitmans MJ, Peeters RL, Westra RL, Volders PG. Noninvasive reconstruction of cardiac electrical activity: update on current methods, applications and challenges. Neth Hear J 2015;23(6):301-11.
  • [79] Heckert EW, Cook WR, Krause S. The clinical value of vectorcardiography. Am J Cardiol 1961;7(5):657-60. http://dx.doi.org/10.1016/0002-9149(61)90449-0.
  • [80] Dehghani N, Bédard C, Cash SS, Halgren E, Destexhe A. Comparative power spectral analysis of simultaneous elecroencephalographic and magnetoencephalographic recordings in humans suggests non-resistive extracellular media. J Comput Neurosci 2010;29(3):405-21. http://dx.doi.org/10.1007/s10827-010-0263-2.
  • [81] Pereda AE. Electrical synapses and their functional interactions with chemical synapses. Nature Rev Neurosci 2014;15(4):250-63. http://dx.doi.org/10.1038/nrn3708.
  • [82] Pietak A, Levin M. Exploring instructive physiological signaling with the bioelectric tissue simulation engine. Front Bioeng Biotechnol 2016;4:55.
  • [83] Halnes G, Ostby I, Pettersen KH, Omholt SW, Einevoll GT. Electrodiffusive model for astrocytic and neuronal ion concentration dynamics. PLoS Comput Biol 2013;9(12):e1003386.
  • [84] Katz L, Bohning A, Gutman I, Jochim K, Korey H, Ocko P, et al. Concerning a new concept of the genesis of the electrocardiogram. Am Heart J 1937;13(1):17-35.
  • [85] Merrill DR, Bikson M, Jefferys JG. Electrical stimulation of excitable tissue: design of efficacious and safe protocols. J Neurosci Methods 2005;141(2):171-98.
  • [86] Lim YG, Lee JS, Lee SM, Lee HJ, Park KS. Capacitive measurement of ECG for ubiquitous healthcare. Ann Biomed Eng 2014;42(11):2218-27. http://dx.doi.org/10.1007/s10439-014-1069-6.
  • [87] Khalili M, GholamHosseini H, Lowe A, Kuo MMY. Motion artifacts in capacitive ECG monitoring systems: a review of existing models and reduction techniques. Med Biol Eng Comput 2024. http://dx.doi.org/10.1007/s11517-024-03165-1.
  • [88] Feynman R, Leighton R, Sands M, Hafner E. The Feynman Lectures on Physics; Vol. I. 33, AAPT; 1965, p. 750.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1e606cf5-51c8-4343-b438-2429e1a07937
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.