PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Experimental Analysis of Atmospheric Water Harvester Using Ammonia Vapour Absorption System

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
There are increasing concerns for the promising future of atmospheric water harvesters (AWH). AWH have been analysed theoretically and experimentally using different technologies such as Vapour Compression (VC) Thermoelectric (TE), Sorption (absorption, adsorption) and shape-based techniques. These techniques are suffering from low water harvesting or high energy consumption. The ammonia vapour absorption system (VAS) (which can be operated using renewable energy sources) has not yet been analysed experimentally. In this study, the AWH based on ammonia VAS has been studied experimentally, the effect of air flow velocity and ambient conditions have been analysed. The comparison between the existing techniques and VAS was performed to explore the possibility of implementing biomass, geothermal and solar energy in generating water from atmosphere, thus reducing the cost of the m3 of water produced.
Rocznik
Strony
221--229
Opis fizyczny
Bibliogr. 33 poz., rys.
Twórcy
autor
  • Faculty of Engineering and Technology, Mechanical Engineering Department, Al Zaytoonah University of Jordan, P.O. Box 130 Amman, Jordan
autor
  • Alternative Energy Technology Department, Faculty of Engineering and Technology, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman, Jordan
  • Department of Mechanical Engineering, Tafila Technical University, P. O. Box 179, 66110, Tafila, Jordan
Bibliografia
  • 1. LEROY, C. 1751. Dissertation on the Elevation and Suspension of Water in the Air, and on Dew. (Dissertation on the Elevation and Suspension of Water in the Air, and on the Dew). Mémoires de l’Acad. Roy. des Sci., 481–518.
  • 2. Ahmad, M., Rodríguez, A., Braslavskaya, A. 2005. Food and water insecurity: re-assessing the value of rainfed agriculture. Water Science and Technology: Water Supply, 5(1), 109–116. DOI: 10.2166/ws.2005.0014
  • 3. Al-Qadami, E.H.H., Abdurrasheed, A.S., Mustaffa, Z., Amran, Y.H., Yusof, K.W., Ahsan, A. 2020. Productivity Enhancement of a Double Slope Solar Still Coupled with a Solar System. Journal of Ecological Engineering, 21(4).
  • 4. Khalil, B., Adamowski, J., Shabbir, A., Jang, C., Rojas, M., Reilly, K., Ozga-Zielinski, B. 2016. A review: dew water collection from radiative passive collectors to recent developments of active collectors. Sustainable Water Resources Management, 2(1), 71–86.
  • 5. Peng, N., Teoh, M.M., Chung, T.S., Koo, L.L. 2011. Novel rectangular membranes with multiple hollow holes for ultrafiltration. Journal of membrane science, 372(1–2), 20–28.
  • 6. Bani Khalid, M., Beithou, N., Al-Taani, M., Andruszkiewicz, A., Alahmer, A., Borowski, G., Alsaqoor, S. 2022. Integrated Eco-Friendly Outdoor Cooling System – Case Study of Hot-Humid Climate Countries. Journal of Ecological Engineering, 23(1), 64–72. https://doi.org/10.12911/22998993/143785
  • 7. Kwan, T.H., Yuan, S., Shen, Y., Pei, G. 2022. Comparative meta-analysis of desalination and atmospheric water harvesting technologies based on the minimum energy of separation. Energy Reports, 8, 10072–10087.
  • 8. http://www.genaq.com/water/.
  • 9. Vián, J.G., Astrain, D., Domınguez, M. 2002. Numerical modelling and a design of a thermoelectric dehumidifier. Applied Thermal Engineering, 22(4), 407–422.
  • 10. Alahmer, A., Khalid, M.B., Beithou, N., Borowski, G., Alsaqoor, S., Alhendi, H. 2022. An Experimental Investigation into Improving the Performance of Thermoelectric Generators. Journal of Ecological Engineering, 23(3).
  • 11. Bhushan B. 2020 Design of water harvesting towers and projections for water collection from fog and condensation. Phil. Trans. R. Soc. A, 378, 20190440. http://dx.doi.org/10.1098/rsta.2019.0440
  • 12. Tu, R., Hwang, Y. 2020. Reviews of atmospheric water harvesting technologies. Energy, 201, 117630.
  • 13. Wang, Y., Danook, S.H., Al-Bonsrulah, H.A., Veeman, D., Wang, F. 2022. A Recent and Systematic Review on Water Extraction from the Atmosphere for Arid Zones. Energies, 15(2), 421.
  • 14. Kwan, T.H., Shen, Y., Hu, T., Pei, G. 2020. The fuel cell and atmospheric water generator hybrid system for supplying grid-independent power and freshwater. Applied Energy, 279, 115780. DOI: 10.1016/j.apenergy.2020.115780
  • 15. Ozkan, O., Wikramanayake, E.D., Bahadur, V. 2017 Modeling humid air condensation in waste natural gas-powered atmospheric water harvesting systems. Applied Thermal Engineering, 118, 224–232.
  • 16. Runze, D., Qingfen, M., Hui, L., Gaoping, W., Wei, Y., Guangfu, C., Yifan, C. 2020. Experimental investigations on a portable atmospheric water generator for maritime rescue. Journal of Water Reuse and Desalination, 10(1), 30–44.
  • 17. Salek, F., Moghaddam, A.N., Naserian, M.M. 2018. Thermodynamic analysis and improvement of a novel solar driven atmospheric water generator. Energy Conversion and Management, 161, 104–111.
  • 18. Salek, F., Eshghi, H., Zamen, M., Ahmadi, M.H. 2022. Energy and exergy analysis of an atmospheric water generator integrated with the compound parabolic collector with storage tank in various climates. Energy Reports, 8, 2401–2412.
  • 19. Eslami, M., Tajeddini, F., Etaati, N. 2018. Thermal analysis and optimization of a system for water harvesting from humid air using thermoelectric coolers. Energy Conversion and Management, 174, 417–429.
  • 20. Yao, Y., Sun, Y., Sun, D., Sang, C., Sun, M., Shen, L., Chen, H. 2017. Optimization design and experimental study of thermoelectric dehumidifier. Applied Thermal Engineering, 123, 820–829.
  • 21. Udomsakdigool, C., Hirunlabh, J., Khedari, J., Zeghmati, B. 2007. Design Optimization of a New Hot Heat Sink with a Rectangular Fin Array for Thermoelectric Dehumidifiers. Heat Transfer Engineering, 28(7), 645–655. DOI: 10.1080/01457630701266470
  • 22. Shourideh, A.H., Ajram, W.B., Al Lami, J., Haggag, S., Mansouri, A. 2018. A comprehensive study of an atmospheric water generator using Peltier effect. Thermal Science and Engineering Progress, 6, 14–26.
  • 23. Liu, S., He, W., Hu, D., Lv, S., Chen, D., Wu, X., Li, S. 2017. Experimental analysis of a portable atmospheric water generator by thermoelectric cooling method. Energy Procedia, 142, 1609–1614. DOI: 10.1016/j.egypro.2017.12.538
  • 24. Xu, X., Niu, R., Feng, G. 2015. An Experimental and Analytical Study of a Radiative Cooling System with Flat Plate Collectors. Procedia Engineering, 121, 1574–1581. DOI: 10.1016/j.proeng.2015.09.180
  • 25. Hosseinzadeh, E., Taherian, H. 2012. An Experimental and Analytical Study of a Radiative Cooling System with Unglazed Flat Plate Collectors. International Journal of Green Energy, 9(8), 766–779. DOI: 10.1080/15435075.2011.641189
  • 26. Subiantoro, A. 2017. Expander-based Atmospheric Water Harvesting in the Tropics. Asian Journal of Water, Environment and Pollution, 14(3), 1–8. doi:10.3233/ajw-170020.
  • 27. Wang, X., Li, X., Liu, G., Li, J., Hu, X., Xu, N., Zhu, J. 2019. An interfacial solar heating assisted liquid sorbent atmospheric water generator. Angewandte Chemie, 131(35), 12182–12186.
  • 28. Ni, F., Qiu, N., Xiao, P., Zhang, C., Jian, Y., Liang, Y., Chen, T. 2020. Tillandsia‐inspired hygroscopic photothermal organogels for efficient atmospheric water harvesting. Angewandte Chemie International Edition, 59(43), 19237–19246.
  • 29. Elashmawy, M., Alatawi, I. 2020. Atmospheric water harvesting from low-humid regions of Hail City in Saudi Arabia. Natural Resources Research, 29(6), 3689–3700.
  • 30. LaPotin, A., Zhong, Y., Zhang, L., Zhao, L., Leroy, A., Kim, H., Wang, E. N. 2021. Dual-stage atmospheric water harvesting device for scalable solar-driven water production. Joule, 5(1), 166–182.
  • 31. Wang, Y., Danook, S.H., AL-bonsrulah, H.A., Veeman, D., Wang, F. 2022. A Recent and Systematic Review on Water Extraction from the Atmosphere for Arid Zones. Energies, 15(2), 421.
  • 32. Zhao, F., Zhou, X., Liu, Y., Shi, Y., Dai, Y., Yu, G. 2019. Super moisture‐absorbent gels for all‐weather atmospheric water harvesting. Advanced Materials, 31(10), 1806446.
  • 33. Ahmad, A., Hamdan, M., Abdelhafez, E., Esra’a Turk, E., Ibbini, J., Abu Shaban, N. 2019 Water disinfection by solar energy. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 17(43), (2088–2098).
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1e5e6d93-6be9-42f5-9f95-52ee064c54b4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.