PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Vibration Signal Processing for Multirotor UAVs Fault Diagnosis: Filtering or Multiresolution Analysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the modern technological advancements, Unmanned Aerial Vehicles (UAVs) have emerged across diverse applications. As UAVs evolve, fault diagnosis witnessed great advancements, with signal processing methodologies taking center stage. This paper presents an assessment of vibration-based signal processing techniques, focusing on Kalman filtering (KF) and Discrete Wavelet Transform (DWT) multiresolution analysis. Experimental evaluation of healthy and faulty states in a quadcopter, using an accelerometer, are presented. The determination of the 1024 Hz sampling frequency is facilitated through finite element analysis of 20 mode shapes. KF exhibits commendable performance, successfully segregating faulty and healthy peaks within an acceptable range. While thesix-level multi-decomposition unveils good explanations for fluctuations eluding KF. Ultimately, both KF and DWT showcase high-performance capabilities in fault diagnosis. However, DWT shows superior assessment precision, uncovering intricate details and facilitating a holistic understanding of fault-related characteristics.
Rocznik
Strony
art. no. 176318
Opis fizyczny
Bibliogr. 75 poz., rys., tab., wykr.
Twórcy
  • Training and Workshops Center, University Of Technology-Iraq, Iraq
  • Faculty of Automatic Control, Robotics and Electrical Engineering, Institute of Robotics and Machine Intelligence, Poznan University of Technology, Poland
  • Mechanical Engineering Department, University of Technology-Iraq, Iraq
  • Mechanical Engineering Department, University of Technology-Iraq, Iraq
  • Faculty of Automatic Control, Robotics and Electrical Engineering, Institute of Robotics and Machine Intelligence, Poznan University of Technology, Poland
Bibliografia
  • 1. Milidonis, K., Eliades, A., Grigoriev, V., & Blanco, M. J. (2023). Unmanned Aerial Vehicles (UAVs) in the planning, operationand maintenance of concentrating solar thermal systems: A review.Solar Energy, 254, 182–194. https://doi.org/https://doi.org/10.1016/j.solener.2023.03.005
  • 2. Cho, J., Lim, G., Biobaku, T., Kim, S., & Parsaei, H. (2015). Safety and Security Management with Unmanned Aerial Vehicle (UAV) in Oil and Gas Industry. Procedia Manufacturing, 3, 1343–1349. https://doi.org/https://doi.org/10.1016/j.promfg.2015.07.290
  • 3. Kim, D. H., Lee, B. K., & Sohn, S. Y. (2016). Quantifying technology–industry spillover effects based on patent citation network analysis of unmanned aerial vehicle (UAV). Technological Forecasting and Social Change, 105, 140–157. https://doi.org/https://doi.org/10.1016/j.techfore.2016.01.025
  • 4. Czyż, Z., Jakubczak, P., Podolak, P., Skiba, K., Karpiński, P., Droździel-Jurkiewicz, M., & Wendeker, M. (2023). Deformation measurement system for UAV components to improve their safe operation. Eksploatacja i Niezawodność – Maintenance and Reliability. https://doi.org/10.17531/ein/172358
  • 5. Hadi, H. J., Cao, Y., Nisa, K. U., Jamil, A. M., & Ni, Q. (2023). A comprehensive survey on security, privacy issues and emerging defence technologies for UAVs. Journal of Network and Computer Applications, 213, 103607. https://doi.org/https://doi.org/10.1016/j.jnca.2023.103607
  • 6. Kähler, S. T., Abben, T., Luna-Rodriguez, A., Tomat, M., & Jacobsen, T. (2022). An assessment of the acceptance and aesthetics of UAVs and helicopters through an experiment and a survey. Technology in Society, 71, 102096. https://doi.org/https://doi.org/10.1016/j.techsoc.2022.102096
  • 7. Amarasingam, N., Ashan Salgadoe, A. S., Powell, K., Gonzalez, L. F., & Natarajan, S. (2022). A review of UAV platforms, sensors, and applications for monitoring of sugarcane crops. Remote Sensing Applications: Society and Environment, 26, 100712. https://doi.org/https://doi.org/10.1016/j.rsase.2022.100712
  • 8. Saif, A., Dimyati, K., Noordin, K. A., Mosali, N. A., G.C., D., & Alsamhi, S. H. (2023). Skyward bound: Empowering disaster resilience with multi-UAV-assisted B5G networks for enhanced connectivity and energy efficiency. Internet of Things, 100885. https://doi.org/https://doi.org/10.1016/j.iot.2023.100885
  • 9. Pecho, P., Škvareková, I., Ažaltovič, V., & Bugaj, M. (2019). UAV usage in the process of creating 3D maps by RGB spectrum. Transportation Research Procedia, 43, 328–333. https://doi.org/https://doi.org/10.1016/j.trpro.2019.12.048
  • 10. Asadzadeh, S., de Oliveira, W. J., & de Souza Filho, C. R. (2022). UAV-based remote sensing for the petroleum industry and environmental monitoring: State-of-the-art and perspectives. Journal of Petroleum Science and Engineering, 208, 109633. https://doi.org/https://doi.org/10.1016/j.petrol.2021.109633
  • 11. Sharma, R., & Arya, R. (2022). UAV based long range environment monitoring system with Industry 5.0 perspectives for smart city infrastructure. Computers & Industrial Engineering, 168, 108066. https://doi.org/https://doi.org/10.1016/j.cie.2022.108066
  • 12. Shen, B., Gu, Q., & Yang, G. (2023). Joint task offloading and UAVs deployment for UAV-assisted mobile edge computing. Computer Networks, 234, 109943. https://doi.org/https://doi.org/10.1016/j.comnet.2023.109943
  • 13. Puchalski, R., & Giernacki, W. (2022). UAV Fault Detection Methods, State-of-the-Art. Drones, 6(11), 330. https://doi.org/10.3390/drones6110330
  • 14. Saied, M., Mahairy, T., Francis, C., Shraim, H., Mazeh, H., & Rafei, M. El. (2019). Differential Flatness-Based Approach for Sensors and Actuators Fault Diagnosis of a Multirotor UAV. IFAC-PapersOnLine, 52(16), 831–836. https://doi.org/https://doi.org/10.1016/j.ifacol.2019.12.066
  • 15. T., T., Low, K. H., & Ng, B. F. (2023). Actuator fault detection and isolation on multi-rotor UAV using extreme learning neuro-fuzzy systems. ISA Transactions, 138, 168–185. https://doi.org/https://doi.org/10.1016/j.isatra.2023.02.026
  • 16. Liang, S., Zhang, S., Huang, Y., Zheng, X., Cheng, J., & Wu, S. (2022). Data-driven fault diagnosis of FW-UAVs with consideration of multiple operation conditions. ISA Transactions, 126, 472–485. https://doi.org/https://doi.org/10.1016/j.isatra.2021.07.043
  • 17. Li, Y., Zhu, X., & Yin, G. (2023). Robust actuator fault detection for quadrotor UAV with guaranteed sensitivity. Control Engineering Practice, 138, 105588. https://doi.org/https://doi.org/10.1016/j.conengprac.2023.105588
  • 18. Saied, M., Lussier, B., Fantoni, I., Shraim, H., & Francis, C. (2017). Fault Diagnosis and Fault-Tolerant Control of an Octorotor UAV using motors speeds measurements. IFAC-PapersOnLine, 50(1), 5263–5268. https://doi.org/https://doi.org/10.1016/j.ifacol.2017.08.468
  • 19. Su, S., Sun, Y., Peng, C., & Wang, Y. (2023). Aircraft Bleed Air System Fault Prediction based on Encoder-Decoder with Attention Mechanism. Eksploatacja i Niezawodność – Maintenance and Reliability, 25(3). https://doi.org/10.17531/ein/167792
  • 20. Zuber, N., & Bajrić, R. (2020). Gearbox faults feature selection and severity classification using machine learning. Eksploatacja i Niezawodność – Maintenance and Reliability, 22(4), 748–756. https://doi.org/10.17531/ein.2020.4.19
  • 21. Jeon, S., Kang, J., Kim, J., & Cha, H. (2023). Detecting structural anomalies of quadcopter UAVs based on LSTM autoencoder. Pervasive and Mobile Computing, 88, 101736. https://doi.org/https://doi.org/10.1016/j.pmcj.2022.101736
  • 22. Yaman, O., Yol, F., & Altinors, A. (2022). A Fault Detection Method Based on Embedded Feature Extraction and SVM Classification for UAV Motors. Microprocessors and Microsystems, 94, 104683. https://doi.org/https://doi.org/10.1016/j.micpro.2022.104683
  • 23. Al-Haddad, L. A., & Jaber, A. (2022). Applications of Machine Learning Techniques for Fault Diagnosis of UAVs.
  • 24. Jaber, A. A., & Bicker, R. (2018). Development of a condition monitoring algorithm for industrial robots based on artificial intelligence and signal processing techniques. International Journal of Electrical and Computer Engineering, 8(2), 996–1009. https://doi.org/10.11591/ijece.v8i2.pp996-1009
  • 25. Jawad, S., & Jaber, A. (2022). Bearings Health Monitoring Based on Frequency-Domain Vibration Signals Analysis. Engineering and Technology Journal, 41(1), 86–95. https://doi.org/10.30684/etj.2022.131581.1043
  • 26. Campestrini, C., Heil, T., Kosch, S., & Jossen, A. (2016). A comparative study and review of different Kalman filters by applying an enhanced validation method. Journal of Energy Storage, 8, 142–159. https://doi.org/https://doi.org/10.1016/j.est.2016.10.004
  • 27. Kumarappan, M. V., Kashyap, K. R. A., & Prakasam, P. (2023). Fused empirical mode decomposition with spectral flatness and adaptive filtering technique for denoising of ECG signals. Analog Integrated Circuits and Signal Processing, 114(1), 41–50. https://doi.org/10.1007/s10470-022-02120-0
  • 28. Zang, Y., Li, Y., Duan, Y., Li, X., Chang, X., & Li, Z. (2023). Event-triggered Extended Kalman Filter for UAV Monitoring System. In 2023 IEEE 12th Data Driven Control and Learning Systems Conference (DDCLS)(pp. 2032–2036). https://doi.org/10.1109/DDCLS58216.2023.10167412
  • 29. Yan, D., Zhang, W., Chen, H., & Shi, J. (2023). Robust control strategy for multi-UAVs system using MPC combined with Kalman-consensus filter and disturbance observer. ISA Transactions, 135, 35–51. https://doi.org/https://doi.org/10.1016/j.isatra.2022.09.021
  • 30. Omotuyi, O., & Kumar, M. (2021). UAV Visual-Inertial Dynamics (VI-D) Odometry using Unscented Kalman Filter. IFAC-PapersOnLine, 54(20), 814–819. https://doi.org/https://doi.org/10.1016/j.ifacol.2021.11.272
  • 31. Wang, X., Guo, J., & Cui, N. (2009). Adaptive extended Kalman filtering applied to low-cost MEMS IMU/GPS integration for UAV. In 2009 International Conference on Mechatronics and Automation(pp. 2214–2218). https://doi.org/10.1109/ICMA.2009.5246654
  • 32. Driessen, S. P. H., Janssen, N. H. J., Wang, L., Palmer, J. L., & Nijmeijer, H. (2018). Experimentally Validated Extended Kalman Filter for UAV State Estimation Using Low-Cost Sensors. IFAC-PapersOnLine, 51(15), 43–48. https://doi.org/https://doi.org/10.1016/j.ifacol.2018.09.088
  • 33. Benzerrouk, H., Nebylov, A., & Salhi, H. (2016). Quadrotor UAV state estimation based on High-Degree Cubature Kalman filter. IFAC-PapersOnLine, 49(17), 349–354. https://doi.org/https://doi.org/10.1016/j.ifacol.2016.09.060
  • 34. Kim, S.-H., Negash, L., & Choi, H.-L. (2016). Cubature Kalman Filter Based Fault Detection and Isolation for Formation Control of Multi-UAVs. IFAC-PapersOnLine, 49(15), 63–68. https://doi.org/https://doi.org/10.1016/j.ifacol.2016.07.710
  • 35. Ghazali, M. H. M., & Rahiman, W. (2022). An Investigation of the Reliability of Different Types of Sensors in the Real-Time Vibration-Based Anomaly Inspection in Drone. Sensors, 22(16). https://doi.org/10.3390/s22166015
  • 36. Bhandari, S., & Jotautienė, E. (2022). Vibration Analysis of a Roller Bearing Condition Used in a Tangential Threshing Drum of a Combine Harvester for the Smooth and Continuous Performance of Agricultural Crop Harvesting. Agriculture (Switzerland), 12(11). https://doi.org/10.3390/agriculture12111969
  • 37. Sanjeet, S., Sahoo, B. D., & Parhi, K. K. (2023). Low-energy real FFT architectures and their applications to seizure prediction from EEG. Analog Integrated Circuits and Signal Processing, 114(3), 287–298. https://doi.org/10.1007/s10470-022-02094-z
  • 38. Al-Haddad, L. A., & Jaber, A. A. (2023). Influence of Operationally Consumed Propellers on Multirotor UAVs Airworthiness: FiniteElement and Experimental Approach. IEEE Sensors Journal, 1. https://doi.org/10.1109/JSEN.2023.3267043
  • 39. Rebiai, M., Ould Zmirli, M., Bengherbia, B., & Lachenani, S. A. (2023). Faults Diagnosis of Rolling-Element Bearings Based on Fourier Decomposition Method and Teager Energy Operator. Arabian Journal for Science and Engineering, 48(5), 6521–6539. https://doi.org/10.1007/s13369-022-07401-4
  • 40. Kotowski, A. (2016). THE METHOD OF FREQUENCY DETERMINATION OF IMPULSE RESPONSE COMPONENTS BASED ON CROSS-CORRELATION VS. FAST FOURIER TRANSFORM, 17(1), 59–64.
  • 41. Popardovský, V., Ferenčák, M., Kriš, T., Tomaštík, M., & Novotný, L. (2021). Tricopter vibration analysis. Diagnostyka, 22(3), 67–72. https://doi.org/10.29354/DIAG/141314
  • 42. Al-Haddad, L. A., Jaber, A. A., Neranon, P., & Al-Haddad, S. A. (2023). Investigation of Frequency-Domain-Based Vibration Signal Analysis for UAV Unbalance Fault Classification. Engineering and Technology Journal, 41(7), 1–9. https://doi.org/10.30684/etj.2023.137412.1348
  • 43. Yao, Y., Li, X., Yang, Z., Li, L., Geng, D., Huang, P., … Song, Z. (2022). Vibration Characteristics of Corn Combine Harvester with the Time-Varying Mass System under Non-Stationary Random Vibration. Agriculture (Switzerland), 12(11). https://doi.org/10.3390/agriculture12111963
  • 44. Oyarzun, J., Aizpuru, I., & Baraia-Etxaburu, I. (2022). Time–Frequency Analysis of Experimental Measurements for the Determination of EMI Noise Generators in Power Converters. Electronics (Switzerland), 11(23). https://doi.org/10.3390/electronics11233898
  • 45. Noureddine, L., Noureddine, M., Hafaifa, A., & Kouzou, A. (2019). DWT-PSD extraction feature for defect diagnosis of small wind generator. Diagnostyka, 20(3), 45–52. https://doi.org/10.29354/diag/110458
  • 46. Jaber, A. A., & Bicker, R. (2018). Development of a condition monitoring algorithm for industrial robots based on artificial intelligence and signal processing techniques. International Journal of Electrical and Computer Engineering, 8(2), 996–1009. https://doi.org/10.11591/ijece.v8i2.pp996-1009
  • 47. Ravikumar, K. N., Madhusudana, C. K., Kumar, H., & Gangadharan, K. V. (2022). Classification of gear faults in internal combustion (IC) engine gearbox using discrete wavelet transform features and K star algorithm. Engineering Science and Technology, an International Journal, 30. https://doi.org/10.1016/j.jestch.2021.08.005
  • 48. Hazeri, H., Zarjam, P., & Azemi, G. (2021). Classification of normal/abnormal PCG recordings using a time–frequency approach. Analog Integrated Circuits and Signal Processing, 109(2), 459–465. https://doi.org/10.1007/s10470-021-01867-2
  • 49. Chikkam, S., & Singh, S. (2023). Condition Monitoring and Fault Diagnosis of Induction Motor using DWT and ANN. Arabian Journal for Science and Engineering, 48(5), 6237–6252. https://doi.org/10.1007/s13369-022-07294-3
  • 50. Al-Haddad, L. A., & Jaber, A. A. (2023). An intelligent fault diagnosis approach for multirotor UAVs based on deep neural network of multi-resolution transform features. Drones, 7(2), 82.https://doi.org/10.3390/drones7020082
  • 51. A. R. Mohanty, Machinerycondition Monitoring: Principles And Practices: Taylor & Francis Group, 2015. (n.d.).https://doi.org/10.1201/9781351228626
  • 52. Li, B., Jiang, Z., & Chen, J. (2022). Performance of the Multiscale Sparse Fast Fourier Transform Algorithm. Circuits, Systems, and Signal Processing, 41(8), 4547–4569. https://doi.org/10.1007/s00034-022-01989-6
  • 53. Ardolino, R. S. (2007). Wavelet-based signal processing of electromagnetic pulse generated waveforms. NAVAL POSTGRADUATE SCHOOL MONTEREY CA.
  • 54. Jawad, S. M., & Jaber, A. A. (2023). Bearings Health Monitoring Based on Frequency-Domain Vibration Signals Analysis. Engineering and Technology Journal, 41(01), 86–95.https://doi.org/10.30684/etj.2022.131581.1043
  • 55. Gonçalves, M. A., Gonçalves, A. S., Franca, T. C. C., Santana, M. S., da Cunha, E. F. F., & Ramalho, T. C. (2022). Improved Protocol for the Selection of Structures from Molecular Dynamics of Organic Systems in Solution: The Value of Investigating Different Wavelet Families. Journal of Chemical Theory and Computation, 18(10), 5810–5818. https://doi.org/10.1021/acs.jctc.2c00593
  • 56. Too, J., Abdullah, A. R., Mohd Saad, N., Mohd Ali, N., & Musa, H. (2018). A detail study of wavelet families for EMG pattern recognition. International Journal of Electrical and Computer Engineering, 8(6), 4221–4229. https://doi.org/10.11591/ijece.v8i6.pp.4221-4229
  • 57. S. Rajbhandari, “Application of Wavelets and Artificial Neural Network for Indoor Optical WirelessCommunication Systems”, PhD PhD Thesis, School of Computing, Engineering and Information Sciences,University of Northumbria at Newcastle, UK, 2009. (n.d.).
  • 58. D. Giaouris, B. Zahawi, G. El-Murr, and V. Pickert, “Application of Wavelet Transformation for the Identificationof High Frequency Spurious Signals in Step Down DC -DC Converter Circuits Experiencing Intermittent ChaoticPatterns,” in Power Electronics, Machines and Drives, 2006. The 3rd IET International Conference on, 2006,pp. 394-397. (n.d.).https://doi.org/10.1049/cp:20060138
  • 59. Ong, P., Tieh, T. H. C., Lai, K. H., Lee, W. K., & Ismon, M. (2019). Efficient gear fault feature selection based on moth-flame optimisation in discrete wavelet packet analysis domain. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41(6), 266. https://doi.org/10.1007/s40430-019-1768-x
  • 60. Vivas, E. L. A., Garcia-Gonzalez, A., Figueroa, I., & Fuentes, R. Q. (2013). Discrete Wavelet transform and ANFIS classifier for Brain-Machine Interface based on EEG. In 2013 6th International Conference on Human System Interactions, HSI 2013(pp. 137–144). https://doi.org/10.1109/HSI.2013.6577814
  • 61. Stanković, M., Mirza, M. M., & Karabiyik, U. (2021). UAV forensics: DJI mini 2 case study. Drones, 5(2), 49.https://doi.org/10.3390/drones5020049
  • 62. Yang, C.-C., Chuang, H., & Kao, D.-Y. (2021). Drone Forensic Analysis Using Relational Flight Data: A Case Study of DJI Spark and Mavic Air. Procedia Computer Science, 192, 1359–1368. https://doi.org/https://doi.org/10.1016/j.procs.2021.08.139
  • 63. Al-Haddad, L. A., & Jaber, A. A. (2022). An Intelligent Quadcopter Unbalance Classification Method Based on Stochastic Gradient Descent Logistic Regression. In 2022 3rd Information Technology To Enhance e-learning and Other Application (IT-ELA)(pp. 152–156). https://doi.org/10.1109/IT-ELA57378.2022.10107922
  • 64. Jaber, A. A., & Bicker, R. (2014). A simulation of non-stationary signal analysis using wavelet transform based on LabVIEW and Matlab. In Proceedings -UKSim-AMSS 8th European Modelling Symposium on Computer Modelling and Simulation, EMS 2014(pp. 138–144). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/EMS.2014.38
  • 65. H. Hadi, M., Hussain Issa, A., & Alaa Sabri, A. (2021). Design and FPGA Implementation of Intelligent Fault Detection in Smart Wireless Sensor Networks. Engineering and Technology Journal, 39(4A), 653–662. https://doi.org/10.30684/etj.v39i4A.1951
  • 66. Ghermoul Oussamaand Benguesmia, H. and B. L. (2023). Finite element modeling for electric field and voltage distribution along the cap and pin insulators under pollution. Diagnostyka, 24(2), 1–9. https://doi.org/10.29354/diag/159517
  • 67. Flaieh, E. H., Hamdoon, F. O., & Jaber, A. A. (2020). Estimation the natural frequencies of a cracked shaft based on finite element modeling and artificial neural network. International Journal on Advanced Science, Engineering and Information Technology, 10(4), 1410–1416.https://doi.org/10.18517/ijaseit.10.4.12211
  • 68. Ogaili, A. A. F., Hamzah, M. N., & Jaber, A. A. (2022). Integration of Machine Learning (ML) and Finite Element Analysis (FEA) for Predicting the Failure Modes of a Small Horizontal Composite Blade. International Journal of Renewable Energy Research (IJRER), 12(4), 2168–2179.
  • 69. Sheng, T. K., Esakki, B., Ganesan, S., & Salunkhe, S. (2019). Finite element analysis, prototyping and field testing of amphibious UAV. UPB Sci. Bull. Ser. D Mech. Eng, 81, 125–140.
  • 70. Guan, Y., Xu, W., & Zhang, M. (2020). Nonlinear modeling of composite wing with application to UAV flight dynamic analysis. Mechanical Systems and Signal Processing, 138, 106542. https://doi.org/https://doi.org/10.1016/j.ymssp.2019.106542
  • 71. Harnefors, L., Finger, R., Wang, X., Bai, H., & Blaabjerg, F. (2017). VSC Input-Admittance Modeling and Analysis Above the Nyquist Frequency for Passivity-Based Stability Assessment. IEEE Transactions on Industrial Electronics, 64(8), 6362–6370. https://doi.org/10.1109/TIE.2017.2677353
  • 72. Pietrzak, P., & Wolkiewicz, M. (2023). Demagnetization Fault Diagnosis of Permanent Magnet Synchronous Motors Based on StatorCurrent Signal Processing and Machine Learning Algorithms. Sensors, 23(4). https://doi.org/10.3390/s23041757
  • 73. Gao, A., Feng, Z., & Liang, M. (2021). Permanent magnet synchronous generator stator current AM-FM model and joint signature analysis for planetary gearbox fault diagnosis. Mechanical Systems and Signal Processing, 149, 107331. https://doi.org/https://doi.org/10.1016/j.ymssp.2020.107331
  • 74. Yu, J., Wang, S., Wang, L., & Sun, Y. (2023). Gearbox fault diagnosis based on a fusion model of virtual physical model and data-driven method. Mechanical Systems and Signal Processing, 188, 109980. https://doi.org/https://doi.org/10.1016/j.ymssp.2022.109980
  • 75. Gohshi, S. (2012). A new signal processing method for video: reproduce the frequency spectrum exceeding the Nyquist frequency. In Proceedings of the 3rd Multimedia Systems Conference(pp. 47–52).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1e5d49fc-388d-4eef-bdf9-b4798f2c558f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.