PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimization of T-6 cycle and Characterization of Si3N4 Reinforced High Strength Aluminum Metal Matrix Composites

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this research, AA7068/Si3N4 composites were fabricated through stir casting with the attachment of ultrasonic treatment. The quenching medium and aging duration significantly influenced the hardness of Al alloy samples. Peak hardness was achieved after 12 h of artificial aging at the temperature of 140°C. The addition of nano Si3N4 significantly refined the microstructure of unreinforced AA7068. The dispersion of intermetallic compounds (MgZn2) and grain boundary discontinuation were noticed after the T-6 heat treatment. Ultimate tensile strength, yield strength, and hardness were improved by 70.95%, 76.19%, and 44.33%, respectively, with the addition of 1.5 weight % Si3N4 compared to as-cast alloy due to the combined effect of heat treatment, hall-Petch, Orowan, thermal miss match, load-bearing strengthening mechanisms and uniform dispersion of reinforcement. A reduction in percentage elongation was noticed due to composites’ brittle nature by the effect of ceramic Si3N4 particles’ inclusion. The fracture surfaces reveal ductile failure for alloy and mixed-mode failure in the case of composites.
Twórcy
autor
  • Maulana Azad National Institute of Technology, Department of Mechanical Engineering, Bhopa l, Madhya Pradesh, India
  • Maulana Azad National Institute of Technology, Department of Mechanical Engineering, Bhopa l, Madhya Pradesh, India
  • Maulana Azad National Institute of Technology, Department of Mechanical Engineering, Bhopa l, Madhya Pradesh, India
  • Maulana Azad National Institute of Technology, Department of Mechanical Engineering, Bhopa l, Madhya Pradesh, India
Bibliografia
  • [1] B.R. Sunil, Developing Surface Metal Matrix Composites: A Comparative Survey, Int. J. Adv. Mater. Sci. Eng. 4, 3, 9-16 (2015). DOI: https://doi.org/10.14810/ijamse.2015.4302
  • [2] E.A.M. Shalaby, A.Y. Churyumov, A.N. Solonin, A. Lotfy, Preparation and characterization of hybrid A359/(SiC+Si3N4) composites synthesized by stir/squeeze casting techniques, Mater. Sci. Eng. A 674, 18-24(2016). DOI: https://doi.org/10.1016/j.msea.2016.07.058
  • [3] R.K. Singh, A. Telang, S. Das, Microstructure, mechanical properties and two-body abrasive wear behaviour of hypereutectic Al-Si-SiC composite, Trans. Nonferrous Met. Soc. China 30, 1, 65-75 (2020). DOI: https://doi.org/10.1016/s1003-6326(19)65180-0
  • [4] R.S. Rai, R. Palanivel, J. David Raja Selvam, In-situ synthesis and microstructural characterization of AA6061/(TiB2 + TiC) particles in AA6061 aluminium composite, Mater. Today Proc. 43, 2255-2258 (2020). DOI: https://doi.org/10.1016/j.matpr.2020.12.533
  • [5] R.R. Veeravalli, R. Nallu, S. Mohammed Moulana Mohiuddin, Mechanical and tribological properties of AA7075-TiC metal matrix composites under heat treated (T6) and cast conditions, J. Mater. Res. Technol. 5, 4, 377-383 (2016). DOI: https://doi.org/10.1016/j.jmrt.2016.03.011
  • [6] H.R. Ezatpour, S.A. Sajjadi, M.H. Sabzevar, Y. Huang, Investigation of microstructure and mechanical properties of Al6061-nanocomposite fabricated by stir casting, Mater. Des. 55, 921-928 (2014). DOI: https://doi.org/10.1016/j.matdes.2013.10.060
  • [7] A. Kumar, R.S. Rana, R. Purohit, Synthesis & analysis of mechanical and tribological behaviour of silicon carbide and graphite reinforced aluminium alloy hybrid composites, Mater. Today Proc. 26, 3152-3156 (2019). DOI: https://doi.org/10.1016/j.matpr.2020.02.650
  • [8] P. Shao et al., Microstructure and tensile properties of 5083 Al matrix composites reinforced with graphene oxide and graphene nanoplates prepared by pressure infiltration method, Compos. Part A Appl. Sci. Manuf. 109, 2, 151-162 (2018). DOI: https://doi.org/10.1016/j.compositesa.2018.03.009
  • [9] A.I. Journal, M. Baghel, C.M. Krishna, Synthesis and characterization of MWCNTs / Al6082 nanocomposites through ultrasonic assisted stir casting technique, Part. Sci. Technol. 1-13 (2022). DOI: https://doi.org/10.1080/02726351.2022.2065651
  • [10] A. Kumar, R.S. Rana, R. Purohit, Tribological Analysis and Characterization of Zinc Rich Al/Si3N4 Composites Fabricated Via Ultrasonic Assisted Stir Casting Technique, Adv. Mater. Process. Technol. 1-13, (2021). DOI: https://doi.org/10.1080/2374068X.2021.1959111
  • [11] S.E. Hernández-Martínez, J.J. Cruz-Rivera, C.G. Garay-Reyes, C.G. Elias-Alfaro, R. Martínez-Sánchez, J.L. Hernández-Rivera, Application of ball milling in the synthesis of AA 7075-ZrO2 metal matrix nanocomposite, Powder Technol. 284, 40-46 (2015). DOI: https://doi.org/10.1016/j.powtec.2015.06.030
  • [12] M. Irfan, U. Haq, Friction and Wear Behavior of AA 7075-Si3N4 Composites Under Dry Conditions: Effect of Sliding Speed, pp. 0-6, (2018).
  • [13] S. Kumar Patel, V. Pratap Singh, D. Kumar, B. Saha Roy, B. Kuriachen, Microstructural, mechanical and wear behavior of A7075 surface composite reinforced with WC nanoparticle through friction stir processing, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 276, no. December 2021, 115476 (2022). DOI: https://doi.org/10.1016/j.mseb.2021.115476
  • [14] R. Clark et al., On the correlation of mechanical and physical properties of 7075-T6 Al alloy, Eng. Fail. Anal. 12, 4, 520-526 (2005). DOI: https://doi.org/10.1016/j.engfailanal.2004.09.005
  • [15] J.M. Mistry, P.P. Gohil, Experimental investigations on wear and friction behaviour of Si3N4p reinforced heat-treated aluminium matrix composites produced using electromagnetic stir casting process, Compos. Part B Eng. 161, no. August 2018, 190-204 (2019). DOI: https://doi.org/10.1016/j.compositesb.2018.10.074
  • [16] P. Sharma, S. Sharma, D. Khanduja, Production and some properties of Si3N4 reinforced aluminium alloy composites, J. Asian Ceram. Soc. 3, 3, 352-359 (2015). DOI: https://doi.org/10.1016/j.jascer.2015.07.002
  • [17] R.K. Singh, A. Telang, S. Das, The influence of abrasive size and applied load on abrasive wear of Al-Si-SiCp composite, Arab. J. Sci. Eng. (2021). DOI: https://doi.org/10.1007/s13369-021-06349-1
  • [18] P.J. Mane, K.L.V. Kumar, Study on ageing behaviour of silicon nitride reinforced Al6061 composites, Procedia Eng. 97, 642-647 (2014). DOI: https://doi.org/10.1016/j.proeng.2014.12.293
  • [19] C.S. Ramesh, R. Keshavamurthy, B.H. Channabasappa, S. Pramod, Friction and wear behavior of Ni-P coated Si3N4 reinforced Al6061 composites, Tribol. Int. 43, 3, 623-634, (2010). DOI: https://doi.org/10.1016/j.triboint.2009.09.011
  • [20] R. Ambigai, S. Prabhu, Optimization of friction and wear behaviour of Al-Si3N4 nano composite and Al-Gr-Si3N4 hybrid composite under dry sliding conditions, Trans. Nonferrous Met. Soc. China (English Ed.) 27, 5, 986-997 (2017). DOI: https://doi.org/10.1016/s1003-6326(17)60116-X
  • [21] R.K. Singh, A. Telang, S. Das, Abrasive wear response of Al-Si-SiCp composite: Effect of friction heat and friction coefficient, Int. J. Mater. Res. 1-7 (2021). DOI: https://doi.org/10.1515/ijmr-2020-7869
  • [22] R.K. Singh, A. Telang, S. Das, Abrasive wear behaviour of as-cast and heat-treated Al-Si-SiCp composite, Int. J. Mater. Res. (formerly Z. Metallkd.) 109, 1-9 (2018). DOI: https://doi.org/10.3139/146.111727
  • [23] J. Li, S. Lü, S. Wu, Q. Gao, Effects of ultrasonic vibration on microstructure and mechanical properties of nano-sized SiC particles reinforced Al-5Cu composites, Ultrason. Sonochem 42, no. October 2017, 814-822 (2018). DOI: https://doi.org/10.1016/j.ultsonch.2017.12.038
  • [24] P.A. Rometsch, Y. Zhang, S. Knight, Heat treatment of 7xxx series aluminium alloys - Some recent developments, Trans. Nonferrous Met. Soc. China 24, 7, 2003-2017 (2017). DOI: https://doi.org/10.1016/s1003-6326(14)63306-9
  • [25] N. Srivastava, G.P. Chaudhari, Microstructural evolution and mechanical behavior of ultrasonically synthesized Al6061-nano alumina composites, Mater. Sci. Eng. A 724, 199-207 (2018). DOI: https://doi.org/10.1016/j.msea.2018.03.092
  • [26] A. Parveen, N.R. Chauhan, M. Suhaib, Study of Si3N4 reinforcement on the morphological and tribo-mechanical behaviour of aluminium matrix composites, Mater. Res. Express 6, 4 (2019). DOI: https://doi.org/10.1088/2053-1591/aaf8d8
  • [27] X.G. Fan, D.M. Jiang, Q.C. Meng, B.Y. Zhang, T. Wang, Evolution of eutectic structures in Al-Zn-Mg-Cu alloys during heat treatment, Trans. Nonferrous Met. Soc. China (English Ed.) 16, 3, 577-581 (2006). DOI: https://doi.org/10.1016/s1003-6326(06)60101-5
  • [28] K. Hu, D. Yuan, S. Lin Lu, S. Sen Wu, Effects of nano-SiCp content on microstructure and mechanical properties of SiCp/A356 composites assisted with ultrasonic treatment, Trans. Nonferrous Met. Soc. China (English Ed.) 28, 11, 2173-2180 (2018). DOI: https://doi.org/10.1016/s1003-6326(18)64862-9
  • [29] T.B. Rao, Microstructural, mechanical, and wear properties characterization and strengthening mechanisms of Al7075/SiCnp composites processed through ultrasonic cavitation assisted stir-casting, Mater. Sci. Eng. A 805, September 2020, 140553 (2021). DOI: https://doi.org/10.1016/j.msea.2020.140553
  • [30] N. Srivastava, G.P. Chaudhari, Strengthening in Al alloy nano composites fabricated by ultrasound assisted solidification technique, Mater. Sci. Eng. A 651, 241-247 (2016). DOI: https://doi.org/10.1016/j.msea.2015.10.118
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-1e5b9b39-4223-41ed-9238-9b160fa9b274
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.