Narzędzia help

Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
first previous next last
cannonical link button

http://yadda.icm.edu.pl:443/baztech/element/bwmeta1.element.baztech-1e57c967-aebd-4cbc-b6d8-a19a90e334bc

Czasopismo

Journal of Ecological Engineering

Tytuł artykułu

Optimization of the Operation of a Municipal Wastewater Treatment Plant with Hydrocotyle ranunculoides

Autorzy Quispe, Rebeca  Soto, Mishel  Ingaruca, Ever  Bulege, Wilfredo  Custodio, María 
Treść / Zawartość
Warianty tytułu
Języki publikacji EN
Abstrakty
EN The objective of the study was to optimize the operation of the municipal wastewater treatment plant (WWTP) of the Sicaya district with Hydrocotyle ranunculoides. The relative growth rate of the macrophyte was determined, in addition to the relationship between the population growth area and the final weight according to the number of days elapsed. Medium fences were implemented and the tributary and effluent of the WWTP were characterized physicochemically and microbiologically. The results of the characterization corresponding to the tributary were as follows: 616 mg of TSS/L, 109.2 mg of BOD5/L, 305.4 mg of COD/L, 30.3 mg of oils and fats/L and 3 500 000 NMP of thermotolerant coliforms/100 ml. Owing to the implementation of two medium grids, large suspended solids were retained. The highest efficiency of COD removal with respect to the growth area of H. ranunculoides (2 226.96 m2) was 81.53%. While the efficiency of removal of thermotolerant coliforms was 79.2% at a water temperature of 12.32°C . Using the operational optimization model in the WWTP with H. ranunculoides, an area of 3 291.67 m2of macrophyte population growth was achieved with a removal efficiency of 93.71% COD and an area of 3 591.67m2to remove 79.95% of the thermotolerant coliforms at a temperature of 13°C.
Słowa kluczowe
EN treatment plant   macrophyte   physicochemical parameters   thermotolerant coliforms  
Wydawca Polskie Towarzystwo Inżynierii Ekologicznej
Czasopismo Journal of Ecological Engineering
Rocznik 2019
Tom Vol. 20, nr 9
Strony 228--236
Opis fizyczny Bibliogr. 20 poz., rys., tab.
Twórcy
autor Quispe, Rebeca
  • Universidad Nacional del Centro del Perú, High Mountain Research Center, Av. Mariscal Castilla N° 3989-4089, Huancayo, Perú
autor Soto, Mishel
  • Universidad Nacional del Centro del Perú, High Mountain Research Center, Av. Mariscal Castilla N° 3989-4089, Huancayo, Perú
autor Ingaruca, Ever
  • Universidad Nacional del Centro del Perú, High Mountain Research Center, Av. Mariscal Castilla N° 3989-4089, Huancayo, Perú
autor Bulege, Wilfredo
autor Custodio, María
  • Universidad Nacional del Centro del Perú, High Mountain Research Center, Av. Mariscal Castilla N° 3989-4089, Huancayo, Perú
Bibliografia
1. Alvarez-Mieles G., Irvine K., Griensven A. V., Arias-Hidalgo M., Torres A., Mynett A. E. 2013. Relationships between aquatic biotic communities and water quality in a tropical river-wetland system (Ecuador). Environmental Science and Policy, 34, 115–127. https://doi.org/10.1016/j.envsci.2013.01.011.
2. Alvarez M., Luque L., Bustamante E. 2012. Humedales de la yunga amazónica en los departamentos Huánuco y San Martín, Perú. ECIPERÚ, (June 2009).
3. Barko J. W., Hardin D. G., Matthews M. S. 2007. Growth and morphology of submersed freshwater macrophytes in relation to light and temperature. Canadian Journal of Botany. https://doi.org/10.1139/b82–113.
4. Barrera J., Melgarejo L. M. 2006. Análisis De Crecimiento En Plantas. In Experimentos en fisiologíay bioquímica vegetal.
5. Caviedes Rubio D. I., Delgado D. R., Olaya Amaya A. 2016. Remoción de metales pesados comúnmente generados por la actividad industrial, empleando macrófitas neotropicales. Producción + Limpia, 11(2), 126–149. https://doi.org/10.22507/pml.v11n2a11.
6. Custodio M., Peñaloza R., Chanamé F., Yaranga R., Pantoja R. 2018. Assessment of the Aquatic Environment Quality of High Andean Lagoons using Multivariate Statistical Methods in Two Contrasting Climatic Periods. Journal of Ecological Engineering, 19(6), 24–33. https://doi.org/10.12911/22998993/92677.
7. Eda L. E. H., Chen W. 2010. Integrated water resources management in Peru. In Procedia Environmental Sciences. https://doi.org/10.1016/j.proenv.2010.10.039.
8. EPA. 2019. Water Quality Criteria. Retrieved from https://www.epa.gov/wqc.
9. Hussner A., Lösch R. 2007. Growth and photosynthesis of Hydrocotyle ranunculoides L. fil. in Central Europe. Flora: Morphology, Distribution, Functional Ecology of Plants. https://doi.org/10.1016/j.flora.2007.05.006.
10. Hussner A., Meyer C. 2009. The influence of water level on the growth and photosynthesis of Hydrocotyle ranunculoides L.fil. Flora: Morphology, Distribution, Functional Ecology of Plants. https://doi.org/10.1016/j.flora.2008.10.005.
11. Kouki S., M’hiri F., Saidi N., Belaïd S., Hassen A. 2009. Performances of a constructed wetland treating domestic wastewaters during a macrophytes life cycle. Desalination. https://doi.org/10.1016/j.desal.2008.03.067.
12. Leto C., Tuttolomondo T., La Bella S., Leone R., Licata M. 2013. Growth of Arundo donax L. and Cyperus alternifolius L. in a horizontal subsurface flow constructed wetland using pre-treated urban wastewater-a case study in Sicily (Italy). Desalination and Water Treatment. https://doi.org/10.1080/19443994.2013.792134.
13. Mustapha H. I., Van Bruggen J. J. A., Lens P. N. L. 2015. Vertical subsurface flow constructed wetlands for polishing secondary Kaduna refinery wastewater in Nigeria. Ecological Engineering. https://doi.org/10.1016/j.ecoleng.2015.09.060.
14. Paine C. E. T., Marthews T. R., Vogt D. R., Purves D., Rees M., Hector A., Turnbull L. A. 2012. How to fit nonlinear plant growth models and calculate growth rates: An update for ecologists. Methods in Ecology and Evolution. https://doi.org/10.1111/j.2041–210X.2011.00155.x.
15. Sartori L., Canobbio S., Fornaroli R., Cabrini R., Marazzi F., Mezzanotte V. 2016. COD, nutrient removal and disinfection efficiency of a combined subsurface and surface flow constructed wetland: A case study. International Journal of Phytoremediation. https://doi.org/10.1080/15226514.2015.11 09601.
16. Şener Ş., Şener E., Davraz A. 2017. Evaluation of water quality using water quality index (WQI) method and GIS in Aksu River (SW-Turkey). Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2017.01.102.
17. Vergeles Y., Vystavna Y., Ishchenko A., Rybalka I., Marchand L., Stolberg F. 2015. Assessment of treatment efficiency of constructed wetlands in East Ukraine. Ecological Engineering. https://doi.org/10.1016/j.ecoleng.2015.06.020.
18. Wu H., Zhang J., Ngo H. H., Guo W., Hu Z., Liang S., Liu H. 2015. A review on the sustainability of constructed wetlands for wastewater treatment: Design and operation. Bioresource Technology. https://doi.org/10.1016/j.biortech.2014.10.068.
19. Yakup Onur K. 2016. Changes of dry matter, biomass and relative growth rate with different phenological stages of corn. ScienceDirect, 10, 67–75. Retrieved from https://www.sciencedirect.com/science/article/pii/S221078431630208X.
20. Zheng Y., Wang X. C., Dzakpasu M., Ge Y., Zhao Y., Xiong J. 2016. Performance of a pilot demonstration-scale hybrid constructed wetland system for on-site treatment of polluted urban river water in Northwestern China. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356–015–5207-y.
Kolekcja BazTech
Identyfikator YADDA bwmeta1.element.baztech-1e57c967-aebd-4cbc-b6d8-a19a90e334bc
Identyfikatory
DOI 10.12911/22998993/112486