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MACHINE TOOL CONTROL WITH ADDITIONAL MEASUREMENT FOR
INCREASING THE CONTROL SYSTEM DYNAMICS

As a typical type of controller in the area of maehtools the classical cascade controller is ullecbnsists
of several Pl control loops and allows the positiontrol of the machine tool. This type of conteolls easy to
be implemented and gives satisfactory results hlyt in the case that the sufficiently stiff machio®l is being
controlled. If adverse is true the performance tef tontroller deteriorates. This is due to the,fHuat the
controller is limited by the structural propertigisthe machine tool. The bandwidth of the controiléerestricted
by the position of the first anti-resonant frequen€ the machine tool. The control techniques oeering this
limitation have been extensively researched. Asesult the control technique employing the additiona
measurement of TCP, the model-based predictiveaaatd the Kalman filter is used and deliversitimeased
control system dynamics. The paper deals with #eeiption of the proposed control concept andptiaetical
methods for additional measurement together wighkthlman filter tuning are described. The evaluatid the
proposed control concept is based on the experaitigmieasured data on the machine tool axis wighicant
flexibility.

1. INTRODUCTION

The cascade control concept is the ordinary ugsel @y control in the area of machine
tools. It is simple and reliable control concepattigives satisfactory results, but the
achievable dynamics of the controlled system itricdsd [12], especially if the mechanical
structure is flexible. It is limited by the strucaili properties of the system. Namely by the
first anti-resonant frequency which is connectethuwhe machine tool stiffness. The lower
the stiffness is, the lower the value of the fasti-resonant frequency is which leads to the
narrow passband of the controller and to the wealashic properties of the controlled
system. To overcome this limitation and in gen&yahcrease the dynamic properties of the
controlled system the model-based control techighas been successfully tested in
combination with the additional measurement of Thel Centre Point (TCP). For example

! Czech Technical University in Prague, Faculty afdianical Engineering, Department of Mechanicspfichanics
and Mechatronics, Karlovo nam. 13, Praha 2, CzegguBlic, email: Michael.Valasek@fs.cvut.cz



6 Petr STRAKOS, Michael VALASEK

in [13] the state-feedback controller has been eygul to deliver the increased system
dynamics. The drawback of the technique presemt¢ti3] is the difficulty of the controller
tuning to meet the user’'s demands, especially wherstate vector of the employed model
has no physical meaning. For that reason anothdehimmsed control technique, the model-
based predictive control technique with the Kalrfiker has been used that delivers similar
control results but is much easier and straightéwdanto be tuned.

The motivation of the investigation of the contafi machine tools with flexible
mechanical structure is to build much lighter, hegremuch more flexible machine tools.
Such machine tools would fit into the eco-desigrirey would consume significantly less
energy during their manufacture as well as duriragytoperation.

2. CONCEPT OF THE ADDITIONAL MEASUREMENT

The concept of the additional measurement of TCRwls utilized in the further
presented control technique can be suitably expthon the simple two-mass model of an
arbitrary machine tool, Fig. 1. It can be stateat the first mass in the model represents the
motor itself and the second mass represents thdipoibself. The spring element between
the masses represents the machine tool stiffnessr(eter § and the damper element
stands for the machine tool damping ratio (paramigje The measuring devices can be
placed on the structure to deliver the informatatnout the position of both masses. Based
on them their velocities can also be computed. dh&cription of the machine tool includes
the classical cascade control concept where omlyptsition and velocity of the first mass
(motor) are measured as depicted in the left ddfig 1, although the subject of the control
is the position of the second mass (tool tip). Tdaa lead to the satisfactory control results
only if sufficiently stiff machine tools are beimgntrolled. When adverse is true the concept
of additional measurement is necessary, i.e. th&tipp measurement of the TCP as
depicted in the right part of Fig. 1 where theestiaedback controller is being employed as
an example.

5
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Cascade
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State-feedback
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Fig. 1. Traditional cascade controller and the $talte-feedback controller with additional measumenon simple two-
mass system
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3. PREDICTIVE CONTROL WITH KALMAN FILTERING

The model-based predictive control in the combaratvith the Kalman filter as a state
observer can be used as a model-based controligeehsimilar to the state-feedback
control technique that can improve the control eystlynamics. The experimental control
results concerning the state-feedback control tgciencan be found in [13]. Here the
description of the model-based predictive conigohnique is presented.

3.1 SYSTEM MODEL

As a system model the linear, time invariant, sspt@ce model in discrete form is
considered (1). Within the model also the feedulgtorelation between the input and output
is reflected via the nonzero elements of maiyjxBased on this fact the general form of the
predictive controller has to be derived. This is mery common in the literature [2], [4],
[10,11]. The system model is written as

= +
Xk+1_ A X, Bduk’ 1)
Yi = CyX, +Dyu,
wherexy is the state vector of the dimensiam1, ui is the vector of the inputs with the
dimensionmx1, yy is the output vector with the dimensibrl and the matricedq, By, Cqy,
Dy are the state-space matrices with the dimensions, nxm, | xn, | xm respectively.
The indexk marks the sample in the time inst&rit, whereT is the sampling period.

3.2. MODEL MODIFICATION FOR THE OFFSET FREE CONTROL

The offset free control is an important issue ia theory of predictive control. There
are two main reasons causing the output offsets@ lage the presence of disturbances and
the mismatch between the model and the real sydterorder to solve the output offset
several techniques have been developed. Theyectouhd for example in [5], [8, 9]. If the

{Axkﬂ} :{Ad OMAXK}{B(,}AUK
Y« Co [ Yia Dy
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ka+1 Ap ka Bp , (2)
AX,
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system model has no feed-through relatiDg i6 zero matrix) then the suitable technique,
that has been tested, can be found in [8]. Theideresdt model (1) has the non-zero matrix
D4 therefore the following model modification has bespplied that solves the offset free
control

where A =1-z7" = AX,,, =X,,, =X, &%, =X, —X,_,, Au, =u, —u,_, and 0 and| are the zero
and identity matrices of respective dimensioxs, is the state vector of the new state-space
model (2),Au, is the vector of input differences, is the output vector and the matrices
A,, B,, C,, D, are the new state-space model matrices. The ikaearks the sample in

the time instank.T again, wherd is the sampling period.

3.3. PREDICTION OF THE SYSTEM BEHAVIOUR

The prediction of the future system behaviour, Whis the main principle of the
predictive control, is created in the following man
« Based on (2) the prediction of the state and thpubun thek+1 time sample is
created

ka+1 = Apxpk + BpAuk' yk+1 : + D Au|<+1 (3)

p pk+1
* The prediction is also created in the2 time sample

X =A X +BAu

pk+2 p pk+l k+17 yk+2: p pk+2+D Auk+2 (4)

* Substituting (3) in (4) in order to eliminasg, ., , it is derived

X k2 —Apxpk +A,B,Au, +B Au, 5)
Yo =C Apxpk +C,A B,Au, +C B Au,, +DAu,,,

« Starting with (5) and creating the prediction hek+3 time sample, it is obtained
pk+3 = Apxpk+1 + ApoAuk+1+ BpAuk+2

Yies = CoAZX 1 +C,A B AU, +C B AU,,,+D Au,,

ptpk+1

(6)

wherex, ., is eliminated using (3) and it is obtained

Xpk+3 —Apxpk +A B,Au, +A B Au,,, +BAu,,, Ko
Vs =C Apxpk +CpApoAuk +C A B,Au,,, +C B Au,,, +D Au,,,
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« Continuing in such recursion till the-i time sample it is derived

— Al i-1 i-2
Xpesi = ApXp A, B AU +A "B AUy, +.. +B AU

Yiei = CoA X +C,A'B AU, +C A B AU, +...+C B AU, , +D AU,

P pk p

(8)

« Based on the previous equations one matrix equafidhe future predictions up to
the horizom, can be written as

L - - [ Au
Yea | [ CoA, C,B, D, 0 w0 “
uk+l
Ve, C,A> C,A B C,B D 0
k:2 _ p: P X,y + P :p P p: P :p . : Au,,, (9)
n, - n,-1 n,-2 ny=3
_yk+“y_ _CpAp i _CpAp B, CAS B, CGAS B, - Dp_ Au
N — k+ny
: i " T
u

* The equation of the prediction can be written & ¢bmpact form as

y =Px+HAu (10)

—

3.4. PREDICTIVE CONTROL LAW

For the derivation of the predictive control lawethuadratic cost function is being
used. Here the following quadratic cost functios haen used

2

: (11)

2

n, 2 ny 2 Ny
J= QyZ| Newi =Y deZ||yk+i _yk+i—1|| + dQuZ||Auk+i
i=1 2 i=1 2 i=0

where the vectors,,;, y,.., Au,,, stands for the vector of the desired output valties

vector of the predicted outputs and the vector he predicted input increments. The
coefficientsn, an, are the horizons of the predicted outputs andnpet increments, where
1<sn <o andO0<n,<n -1. The coefficientR,, dQ, a dQ, are the weighting factors for

each part of the quadratic cost function by whioh tesulting control action is tuned. For
example the coefficienQ, influences the amount of the position deviationimty the
control, the coefficientiQ, influences the rate of the change in the contladietput and the
coefficientdQ, influences the dynamics and the amplitude of thetrol input. The cost
function (11) can be written in the compact form as

~+dQ, Jaulf, (12)

2
J=Q H[ - XHZ +dQ, HX Yo
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wherey, , =z'y. The control law is derived by the minimisationtbé cost function (12)

using the condition

dJ
—=0 13
i (13)

This leads to the expression
A, =e,[(Q+dQ,)HTH+dQ,I | HT[Qr+dQ v, -(Q +dQ,)Px],  (14)

which is the first element of the vectan that is implemented in the time sampl€ as the
control action. In (14) the matrig, consists of

e=[l 00 .. 0, (15)
wherel andO are the identity and zero matrices of the dimerseqgual tQAu, .

3.5. KALMAN FILTER AS A STATE OBSERVER FOR THE PREOTIVE CONTROLLER

Since the Kalman filter is the optimal observer tbe systems affected by the
measurement and process noise a slightly diffenemtel than (1) is used for its derivation

Xiop = Ay X, +By U, +G,w, (16)
Y, =Cy X, +D,u, +Vv, ’

wherewy is the process noise&y is the output or measurement noise and the m@&gix
couples the effect of the process noise to the hmstdées. Here and further it is assumed
G4=B4. The process noise then becomes the input nosendisesvy, Vi are assumed the
white, uncorrelated, with zero mean value and danaesQ, R
E(w,)=E(v,) =0, E(w,w;)=Q, E(v,vi) =R, E(w,v} )=0 (17)

Having such knowledge about the system, the s&t®orin the time sample T can

be estimated using the recursion as [3]
* The correction

. . -1
K1 =P, Ch.(Cy P, Ch +R)
Rt = Ker Ky (Vi = (Ca Ky * Dy ) (18)
Pk 1 P|‘<—1 -K k—l'Cd -P|;—1

* The prediction

1 + Bd 'uk—l

X
- (19)
P Al+G,QG!

5\(k Ad
P =A
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The matrixKy is the Kalman gainp, is the predicted value of the estimation error
covariance matrixpP, is the corrected value of the estimation erroraci@nce matrixX, is
the predicted value of the estimated state vectal % is the corrected value of the
estimated state vector. The state vector estimagistarted by setting the initial valués
and P,. Because the so far presented technique of Kafitbaring delivers the estimation of

the true state,, meanwhile within the predictive controller vectdrthe state the increment
Ax, is used, it is necessary to store also the previaue of the state vectos_, since

Ax, =X, —X,_,. This is done in shift registers where ajgsg andu,_, are stored.

For the correct state estimation not only the systeodel (16) has to be in good
concordance with the real system but also the cavee matriceQ, R have to truly
describe the affecting noise. There exist sevemthriques for estimating the covariance
matrices based on the real measurement. They ciube in [1], [3], [6,7]. For example in
[7] the autocovariance matrices are expressed sed together with least-square method to
estimate the system covariance matrices. Unforély#ie technique is sensitive to any non-
linearity present in the real system, for examgke ICoulomb friction. In the area of
machine tools the Coulomb friction is a very comnpirenomenon. Due to this fact a new
technique for estimating the covariance matriceghwican handle the effect of Coulomb
friction has been developed as described in tHevioig chapter.

4. PRACTICAL METHOD FOR ESTIMATING THE TRUE SYSTEMOVARIANCES

The proposed method is based on the known equattonthe calculation of the signal
covariances (20). The negative effect of the Cobldniction is eliminated by using the
measured closed loop data from the system. Asdateg the classical feedback controller
is used with all feedback loops active (positioeloeity and current control loop). Also the
velocity feedforward is being activated during theasurement. For the position setpoint a
position ramp is used meaning that after the $artsystem settles on the constant speed.
Then also the Coulomb friction force becomes carisdad the position deviation settles at
zero. Based on all these conditions it is posdilyl using the simple arithmetic to filter out
the time behaviour of the process and the measutemogses. The obtained noises are then
processed through (20) to get the true covariarateicesQ, R

X, Y,
x{ : ],Y{;])‘( =E(X,) .Y =E(Y)
X, Y, ’ (20)

cov(X,Y) =
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As an example the mechanical system consistinglioear motor and a table is used.
The motor force is considered as the system inpdtlae position of the motor primary part
and the table position are considered as the systéputs. The signal arithmetic is well
described from Fig. 2 and Fig. 3. Fig. 2 (left) sisahe time behaviour of the requested and
the true value of the motor force. The data aredated. The transient effect, here from Os
to 1s, is missed out. Each signal is then centneel(l value is subtracted) and then the
resulting signals are subtracted from each othera Aesult the record of the process noise is
obtained Fig. 2 (right).

0 %«S&JL’%@VAV&%
Force [N]
,1 -+

24
Force [N]
1 B

— requested input
— true input

| — process (input) noise ‘

< 2
" 1 5 10

Time [s]

\4

0 1 5 10
Time [s]

Fig. 2. Time behaviour of requested and true vafumaotor force (left); time behaviour of processplit) noise (right)

In the case of the measurement noises the procesl@ienilar as in the case of the
motor force, Fig. 3. From the position setpoint ttenaining measured positions are
subtracted. Then the resulting signals are trudc#gain the transient effect from Os to 1s
is missed out. The corresponding measurement ncégsebe seen in Fig. 3 (right).

A ‘t
03T

02+
Position [m]
01t

position setpoint
— motor position
—— table position

0

1

5

10
Time [s]

Position © MWWW(
deviation [m]

-1+

-2

— motor noise
—— table noise

1

5

10
Time [s]

Fig. 3. Time behaviour of measured positions (l¢fithe behaviour of measurement noise (right)

The noise sequences are then processed throughr(@@he requested true covariance
matrices are calculated.

5. EXPERIMENTAL RESULTS

The real experiment of the presented control tegheihas been done on the
experimental mechanical system consisting of the beotor, ball screw feed drive, table
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and the flexible arm as seen in Fig. 4. The flditjopf the arm mounted on the table is
significant. As the measured outputs the motortsdvagular position, the table position and
the arm tip position have been used with the airprézisely control the arm tip position.
The model of the mechanical system has been assémbing FEM method. The four most
important eigenmodes have been included in the mode

Ball screv Drive

Table

Flexible arn

Fig. 4. Experimental mechanical system ETB-1

For the test of the described control technique pibsitioning and dynamical stiffness
tests have been carried out and compared with é¢lsalts of the traditional cascade
controller where the additional measurement offideable arm tip position (TCP) has been
also used. But before that the covariance matigeR for the Kalman filter have been
evaluated. They have been determined as

Q=3.96¢"
4,550 0 0 (21)
R= 0 4.21@7 0
0 0 1.21@°

The matrixQ is scalar due to only one measured input and thexG,=By. The
matrix R is 3x 3 because of three measured outputs.
Setting of the predictive controller within the teesallowing the best achievable
dynamics has been as follows:
« T=0.001s
* n,=300,n, =200
* Q,=1500,dQ, =50000dQ, = 0.05

The positioning test has been done using the pasiimp as a setpoint. The setpoint
changed from O to 0.15m. Comparison of the comédhiniques can be seen in Fig. 5.
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Fig. 5. Time behaviour of the flexible arm tip gami during the positioning test

From the measured data also the frequency respdoisehave been evaluated and the
controller bandwidths have been examined. In Fighes frequency response plots of the
predictive controller and cascade controller amnsh Also the system frequency response
between the flexible arm tip positionygk and the motor torque () is depicted. The
bandwidth of the proposed control compared to thecade controller however with the
TCP measurement has been increased by 80%. Theviodmdbf the cascade controller
without the TCP measurement is more than 10 timssti.

The dynamical stiffness test has been performeatieaseaction of the flexible arm tip
position to the step disturbance in the motor tergithe amount of the step disturbance has
been 7.45 Nm. The results can be seen in Fig. &.iddrease is 5 times. The amplitude of
the position deviation caused by the torque disincke was also attenuated faster.

50 T T
X:4.685 Hz

Y:-2.946 dB

X:2.618 Hz
50| Y:-3.024 dB

Amplitude [dB]

Closed loop - Cascade controller
-400 Closed loop - Predictive controller
——— Open loop - po/Mk transfer function

Phase [deg]

10° 10’ 10
Frequency [Hz]

Fig. 6. System frequency response plots with emachcontrollers
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T I
—— Cascade controller
—— Predictive controller

Arm tip position [m]

N
o———

1 1 1 1 1
0 0.5 1 1.5 2 25 3
Time [s]

Fig. 7. Dynamical stiffness test, compensatiorhefgiosition deviation due to the step disturbance

6. CONCLUSION

The paper deals with the position control of flégilmechanical system using the
additional TCP measurement and it is aimed maialythe area of machine tools. The
motivation is to build much lighter, however muchne flexible machine tools.

Within the paper the modified model-based predéctisontrol technique which
includes also the feed-through tefPg has been derived. The presented control technique
works with the Kalman filter that reconstructs trextor of the states. For the correct state
estimation the good knowledge of the process aadribasurement noises is necessary. For
that purpose the practical method to estimate thie system covariances has been
introduced. All of the presented techniques hawenlested within the real experiments on
the position control of the flexible mechanicalusture. The results showed much better
capabilities of the proposed predictive controllean the so far used cascade controller. The
control system dynamics has been increased asgfowa the positioning test in Fig. 5 and
also the frequency response test in Fig. 6. Thehaesl of the system just using the
additional TCP measurement was increased more flaimmes [13], the passband of the
predictive controller was almost twice as high hattof the system with the cascade
controller, both with the additional TCP measureméitso the dynamical stiffness test in
Fig. 7 proved the better dynamical response irc#se of the predictive controller.
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