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MACHINE TOOL CONTROL WITH ADDITIONAL MEASUREMENT FOR 
INCREASING THE CONTROL SYSTEM DYNAMICS 

As a typical type of controller in the area of machine tools the classical cascade controller is used. It consists  
of several PI control loops and allows the position control of the machine tool. This type of controller is easy to 
be implemented and gives satisfactory results but only in the case that the sufficiently stiff machine tool is being 
controlled. If adverse is true the performance of the controller deteriorates. This is due to the fact, that the 
controller is limited by the structural properties of the machine tool. The bandwidth of the controller is restricted 
by the position of the first anti-resonant frequency of the machine tool. The control techniques overcoming this 
limitation have been extensively researched. As a result the control technique employing the additional 
measurement of TCP, the model-based predictive control and the Kalman filter is used and delivers the increased 
control system dynamics. The paper deals with the description of the proposed control concept and the practical 
methods for additional measurement together with the Kalman filter tuning are described. The evaluation of the 
proposed control concept is based on the experimentally measured data on the machine tool axis with significant 
flexibility.  

1. INTRODUCTION 

The cascade control concept is the ordinary used type of control in the area of machine 
tools. It is simple and reliable control concept that gives satisfactory results, but the 
achievable dynamics of the controlled system is restricted [12], especially if the mechanical 
structure is flexible. It is limited by the structural properties of the system. Namely by the 
first anti-resonant frequency which is connected with the machine tool stiffness. The lower 
the stiffness is, the lower the value of the first anti-resonant frequency is which leads to the 
narrow passband of the controller and to the weak dynamic properties of the controlled 
system. To overcome this limitation and in general to increase the dynamic properties of the 
controlled system the model-based control techniques has been successfully tested in 
combination with the additional measurement of the Tool Centre Point (TCP). For example 
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in [13] the state-feedback controller has been employed to deliver the increased system 
dynamics. The drawback of the technique presented in [13] is the difficulty of the controller 
tuning to meet the user’s demands, especially when the state vector of the employed model 
has no physical meaning. For that reason another model-based control technique, the model-
based predictive control technique with the Kalman filter has been used that delivers similar 
control results but is much easier and straightforward to be tuned.  

The motivation of the investigation of the control of machine tools with flexible 
mechanical structure is to build much lighter, however much more flexible machine tools. 
Such machine tools would fit into the eco-design as they would consume significantly less 
energy during their manufacture as well as during their operation. 

2. CONCEPT OF THE ADDITIONAL MEASUREMENT 

The concept of the additional measurement of TCP which is utilized in the further 
presented control technique can be suitably explained on the simple two-mass model of an 
arbitrary machine tool, Fig. 1. It can be stated that the first mass in the model represents the 
motor itself and the second mass represents the tool tip itself. The spring element between 
the masses represents the machine tool stiffness (parameter kt) and the damper element 
stands for the machine tool damping ratio (parameter bt). The measuring devices can be 
placed on the structure to deliver the information about the position of both masses. Based 
on them their velocities can also be computed. This description of the machine tool includes 
the classical cascade control concept where only the position and velocity of the first mass 
(motor) are measured as depicted in the left part of Fig. 1, although the subject of the control 
is the position of the second mass (tool tip). This can lead to the satisfactory control results 
only if sufficiently stiff machine tools are being controlled. When adverse is true the concept 
of additional measurement is necessary, i.e. the position measurement of the TCP as 
depicted in the right part of Fig. 1 where the state-feedback controller is being employed as 
an example. 
 
 

 

 
Fig. 1. Traditional cascade controller and the full state-feedback controller with additional measurement on simple two-

mass system 
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3. PREDICTIVE CONTROL WITH KALMAN FILTERING 

The model-based predictive control in the combination with the Kalman filter as a state 
observer can be used as a model-based control technique similar to the state-feedback 
control technique that can improve the control system dynamics. The experimental control 
results concerning the state-feedback control technique can be found in [13]. Here the 
description of the model-based predictive control technique is presented. 

3.1 SYSTEM MODEL 

As a system model the linear, time invariant, state-space model in discrete form is 
considered (1). Within the model also the feed-through relation between the input and output 
is reflected via the nonzero elements of matrix Dd. Based on this fact the general form of the 
predictive controller has to be derived. This is not very common in the literature [2], [4], 
[10,11]. The system model is written as 
 

 1k+ k k

k k k

d d

d d

x = A x + B u

y = C x + D u
, (1) 

 
where xk is the state vector of the dimension 1n× , uk is the vector of the inputs with the 
dimension 1m× , yk is the output vector with the dimension 1l ×  and the matrices Ad, Bd, Cd, 
Dd are the state-space matrices with the dimensions n n× , n m× , l n× , l m×  respectively. 
The index k marks the sample in the time instant k.T, where T is the sampling period. 

3.2. MODEL MODIFICATION FOR THE OFFSET FREE CONTROL 

The offset free control is an important issue in the theory of predictive control. There 
are two main reasons causing the output offset. These are the presence of disturbances and 
the mismatch between the model and the real system. In order to solve the output offset 
several  techniques have been developed. They can be found for example in [5], [8, 9]. If the 
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system model has no feed-through relation (Dd is zero matrix) then the suitable technique, 
that has been tested, can be found in [8]. The considered model (1) has the non-zero matrix 
Dd therefore the following model modification has been applied that solves the offset free 
control 
where 1

1 1 1 11 ,  ,  k k k k k k k k kz−
+ + − −∆ = − ⇒ ∆ = − ∆ = − ∆ = −x x x x x x u u u  and 0  and I  are the zero 

and identity matrices of respective dimensions, kpx  is the state vector of the new state-space 

model (2), k∆u  is the vector of input differences, ky  is the output vector and the matrices 

pA , pB , pC , pD  are the new state-space model matrices. The index k marks the sample in 

the time instant k.T again, where T is the sampling period. 

3.3. PREDICTION OF THE SYSTEM BEHAVIOUR 

The prediction of the future system behaviour, which is the main principle of the 
predictive control, is created in the following manner 

• Based on (2) the prediction of the state and the output in the k+1 time sample is 
created 

 
 1 1 1 1,    k k k k k k+ + + += + ∆ = + ∆p p p p p p px A x B u y C x D u  (3) 

 
• The prediction is also created in the k+2 time sample 

 
 2 1 1 2 2 2,    k k k k k k+ + + + + += + ∆ = + ∆p p p p p p px A x B u y C x D u  (4) 

 
• Substituting (3) in (4) in order to eliminate 1k +px , it is derived 
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• Starting with (5) and creating the prediction  in the k+3 time sample, it is obtained 
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 where 1k +px  is  eliminated using (3) and it is obtained 
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• Continuing in such recursion till the k+i time sample it is derived 
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• Based on the previous equations one matrix equation of the future predictions up to 

the horizon ny can be written as 
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• The equation of the prediction can be written in the compact form as 

 
 . .= + ∆y P x H us rr  (10) 

3.4. PREDICTIVE CONTROL LAW 

For the derivation of the predictive control law the quadratic cost function is being 
used. Here the following quadratic cost function has been used 

 

 
2 2 2

1
1 1 02 2 2

y y u
n n n

y k i k i y k i k i u k i
i i i

J Q dQ dQ+ + + + − +
= = =

= − + − + ∆∑ ∑ ∑r y y y u , (11) 

 
where the vectors k i+r , k i+y , k i+∆u  stands for the vector of the desired output values, the 

vector of the predicted outputs and the vector of the predicted input increments. The 
coefficients ny a nu are the horizons of the predicted outputs and the input increments, where 
1 yn≤ < ∞  and 0 1u yn n≤ ≤ − . The coefficients Qy, dQy a dQu are the weighting factors for 

each part of the quadratic cost function by which the resulting control action is tuned. For 
example the coefficient Qy influences the amount of the position deviation during the 
control, the coefficient dQy influences the rate of the change in the controlled output and the 
coefficient dQu influences the dynamics and the amplitude of the control input. The cost 
function (11) can be written in the compact form as 

 

 
2 2 2

22 2
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where 1
old z−=y yr r . The control law is derived by the minimisation of the cost function (12) 

using the condition 

 0
dJ

d
=

∆ur
 (13) 

 
This leads to the expression 
 

 ( ) ( )1
. . . . . . . . . .T T

k y y u y y old y yQ dQ dQ Q dQ Q dQ
−

  ∆ = + + + − +   1u e H H I H r y P xr sr , (14) 

 
which is the first element of the vector ∆ur  that is implemented in the time sample k.T as the 

control action. In (14) the matrix 1e  consists of 

 [ ]=1e I 0 0 0K , (15) 

where I and 0 are the identity and zero matrices of the dimensions equal to k∆u . 

3.5. KALMAN FILTER AS A STATE OBSERVER FOR THE PREDICTIVE CONTROLLER 

Since the Kalman filter is the optimal observer for the systems affected by the 
measurement and process noise a slightly different model than (1) is used for its derivation 

 

 1 . . .
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where wk is the process noise, vk is the output or measurement noise and the matrix Gd 
couples the effect of the process noise to the model states. Here and further it is assumed 
Gd=Bd. The process noise then becomes the input noise. The noises wk, vk are assumed the 
white, uncorrelated, with zero mean value and covariances Q, R 
 ( ) ( ) ( ) ( ) ( ),  ,  ,  T T T
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Having such knowledge about the system, the state vector in the time sample k. T can 
be estimated using the recursion as [3] 
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The matrix Kk is the Kalman gain, '
kP  is the predicted value of the estimation error 

covariance matrix, kP  is the corrected value of the estimation error covariance matrix, 'ˆ kx  is 

the predicted value of the estimated state vector and ˆ kx  is the corrected value of the 

estimated state vector. The state vector estimation is started by setting the initial values '
0x̂  

and '
0P . Because the so far presented technique of Kalman filtering delivers the estimation of 

the true state xk, meanwhile within the predictive controller vector of the state the increment 

k∆x  is used, it is necessary to store also the previous value of the state vector 1k −x  since 

1k k k −∆ = −x x x . This is done in shift registers where also 1k −y  and 1k −u  are stored. 

For the correct state estimation not only the system model (16) has to be in good 
concordance with the real system but also the covariance matrices Q, R have to truly 
describe the affecting noise. There exist several techniques for estimating the covariance 
matrices based on the real measurement. They can be found in [1], [3], [6,7]. For example in 
[7] the autocovariance matrices are expressed and used together with least-square method to 
estimate the system covariance matrices. Unfortunately the technique is sensitive to any non-
linearity present in the real system, for example like Coulomb friction. In the area of 
machine tools the Coulomb friction is a very common phenomenon. Due to this fact a new 
technique for estimating the covariance matrices which can handle the effect of Coulomb 
friction has been developed as described in the following chapter. 

4. PRACTICAL METHOD FOR ESTIMATING THE TRUE SYSTEM COVARIANCES 

The proposed method is based on the known equations for the calculation of the signal 
covariances (20). The negative effect of the Coulomb friction is eliminated by using the 
measured closed loop data from the system. As a regulator the classical feedback controller 
is used with all feedback loops active (position, velocity and current control loop). Also the 
velocity feedforward is being activated during the measurement. For the position setpoint a 
position ramp is used meaning that after the start the system settles on the constant speed. 
Then also the Coulomb friction force becomes constant and the position deviation settles at 
zero. Based  on  all these conditions it is possible by using the simple  arithmetic to filter out 
the time behaviour of the process and the measurement noises. The obtained noises are then 
processed through (20) to get the true covariance matrices Q, R 
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As an example the mechanical system consisting of a linear motor and a table is used. 
The motor force is considered as the system input and the position of the motor primary part 
and the table position are considered as the system outputs. The signal arithmetic is well 
described from Fig. 2 and Fig. 3. Fig. 2 (left) shows the time behaviour of the requested and 
the true value of the motor force. The data are truncated. The transient effect, here from 0s 
to 1s, is missed out. Each signal is then centred (mean value is subtracted) and then the 
resulting signals are subtracted from each other. As a result the record of the process noise is 
obtained Fig. 2 (right). 

  
Fig. 2. Time behaviour of requested and true value of motor force (left); time behaviour of process (input) noise (right) 

In the case of the measurement noises the procedure is similar as in the case of the 
motor force, Fig. 3. From the position setpoint the remaining measured positions are 
subtracted. Then the resulting signals are truncated. Again the transient effect from 0s to 1s 
is missed out. The corresponding measurement noises can be seen in Fig. 3 (right). 

  
Fig. 3. Time behaviour of measured positions (left); time behaviour of measurement noise (right) 

The noise sequences are then processed through (20) and the requested true covariance 
matrices are calculated. 

5. EXPERIMENTAL RESULTS 

The real experiment of the presented control technique has been done on the 
experimental mechanical system consisting of the bed, motor, ball screw feed drive, table 
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and the flexible arm as seen in Fig. 4. The flexibility of the arm mounted on the table is 
significant. As the measured outputs the motor shaft angular position, the table position and 
the arm tip position have been used with the aim to precisely control the arm tip position. 
The model of the mechanical system has been assembled using FEM method. The four most 
important eigenmodes have been included in the model. 

 
 

 

Flexible arm 
Table 

Ball screw Drive 

Bed 

 

Fig. 4. Experimental mechanical system ETB-1 

For the test of the described control technique, the positioning and dynamical stiffness 
tests have been carried out and compared with the results of the traditional cascade 
controller where the additional measurement of the flexible arm tip position (TCP) has been 
also used. But before that the covariance matrices Q, R for the Kalman filter have been 
evaluated. They have been determined as 
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The matrix Q is scalar due to only one measured input and the matrix Gd=Bd. The 

matrix R is 3 3×  because of three measured outputs. 
Setting of the predictive controller within the tests allowing the best achievable 

dynamics has been as follows: 
• T = 0.001s 
• ny = 300, nu = 200 
• Qy = 1500, dQy = 50000, dQu = 0.05 

 
The positioning test has been done using the position ramp as a setpoint. The setpoint 

changed from 0 to 0.15m. Comparison of the control techniques can be seen in Fig. 5. 



Petr STRAKOŠ, Michael VALÁŠEK 

 

14 

 
Fig. 5. Time behaviour of the flexible arm tip position during the positioning test 

From the measured data also the frequency response plots have been evaluated and the 
controller bandwidths have been examined. In Fig. 6 the frequency response plots of the 
predictive controller and cascade controller are shown. Also the system frequency response 
between the flexible arm tip position (xp2) and the motor torque (Mk) is depicted. The 
bandwidth of the proposed control compared to the cascade controller however with the 
TCP measurement has been increased by 80%. The bandwidth of the cascade controller 
without the TCP measurement is more than 10 times lower. 

The dynamical stiffness test has been performed as the reaction of the flexible arm tip 
position to the step disturbance in the motor torque. The amount of the step disturbance has 
been 7.45 Nm. The results can be seen in Fig. 7. The increase is 5 times. The amplitude of 
the position deviation caused by the torque disturbance was also attenuated faster. 

 

 
Fig. 6.  System frequency response plots with examined controllers 
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Fig. 7. Dynamical stiffness test, compensation of the position deviation due to the step disturbance 

6. CONCLUSION 

The paper deals with the position control of flexible mechanical system using the 
additional TCP measurement and it is aimed mainly to the area of machine tools. The 
motivation is to build much lighter, however much more flexible machine tools. 

Within the paper the modified model-based predictive control technique which 
includes also the feed-through term Dd has been derived. The presented control technique 
works with the Kalman filter that reconstructs the vector of the states. For the correct state 
estimation the good knowledge of the process and the measurement noises is necessary. For 
that purpose the practical method to estimate the true system covariances has been 
introduced. All of the presented techniques have been tested within the real experiments on 
the position control of the flexible mechanical structure. The results showed much better 
capabilities of the proposed predictive controller than the so far used cascade controller. The 
control system dynamics has been increased as proved from the positioning test in Fig. 5 and 
also the frequency response test in Fig. 6. The passband of the system just using the 
additional TCP measurement was increased more than 10 times [13], the passband of the 
predictive controller was almost twice as high as that of the system with the cascade 
controller, both with the additional TCP measurement. Also the dynamical stiffness test in 
Fig. 7 proved the better dynamical response in the case of the predictive controller.   
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