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Abstract: In this paper, an alternative framework for data 
analytics is proposed which is based on the spatially-aware 
concepts of eccentricity and typicality which represent the 
density and proximity in the data space. This approach 
is statistical, but differs from the traditional probability 
theory which is frequentist in nature. It also differs from the 
belief and possibility-based approaches as well as from the 
deterministic first principles approaches, although it can be 
seen as deterministic in the sense that it provides exactly 
the same result for the same data. It also differs from the 
subjective expert-based approaches such as fuzzy sets. 
It can be used to detect anomalies, faults, form clusters, 
classes, predictive models, controllers. The main motivation 
for introducing the new typicality- and eccentricity-based 
data analytics (TEDA) is the fact that real processes 
which are of interest for data analytics, such as climate, 
economic and financial, electro-mechanical, biological, 
social and psychological etc., are often complex, uncertain 
and poorly known, but not purely random. Unlike, purely 
random processes, such as throwing dices, tossing coins, 
choosing coloured balls from bowls and other games, real 
life processes of interest do violate the main assumptions 
which the traditional probability theory requires. At the 
same time they are seldom deterministic (more precisely, 
have always uncertainty/noise component which is non-
deterministic), creating expert and belief-based possibilistic 
models is cumbersome and subjective. Despite this, 
different groups of researchers and practitioners favour and 
do use one of the above approaches with probability theory 
being (perhaps) the most widely used one. The proposed 
new framework TEDA is a systematic methodology which 
does not require prior assumptions and can be used for 
development of a range of methods for anomalies and 
fault detection, image processing, clustering, classification, 
prediction, control, filtering, regression, etc. In this paper 
due to the space limitations, only few illustrative examples 
are provided aiming proof of concept.     

Keywords: data density, proximity measures, RDE, data 
analytics, data-driven approaches, machine learning, 
Bayesian 

1. Introduction
Probability theory was around for over two 

centuries [1]. It is well established and widely 
(over)used. Its basis was set up by Thomas Bayes, 

generalised later by Pierre-Simon Laplace and other 
researchers based on observations of purely random 
processes, such as games and gambling. It is perfectly 
suitable for describing such purely random processes 
and variables. However, it is also (extremely) widely 
(over)used to describe real world processes which 
are not purely random and have inter-sample 
dependence, not normal distributions and may have 
small number of observations. For example, climate, 
economic, physical, biological, social, psychological 
and many other real processes are complex and 
difficult to tackle using first principle or expert-based 
models. The traditional probability theory, on the 
other hand, is based on several assumptions which do 
not hold in practice, such as:
a) independence of the individual data samples (ob-

servations) from each other;
b) large (theoretically, infinite) number of data sam-

ples (observations);
c)  prior assumption of the distribution or kernel 

(most often, normal/Gaussian).
The first assumption is fully satisfied for pure 

random processes, but not for real processes which 
are usually of interest. Therefore, the application 
of traditional probability theory for pure random 
processes is justified, but the same is not necessarily 
the case for the real processes which are the vast 
majority of applications of interest.

In this paper, a new systematic framework for 
data analytics is proposed which requires no prior 
assumptions or kernels, user- or problem-specific 
thresholds and parameters to be pre-specified. It is 
entirely based on the data and their mutual distribution 
in the data space. It does not require independence 
of the individual data samples (observations); on the 
contrary, the proposed approach builds upon their 
mutual dependence. It also does not require infinite 
number of observations and can work with as little as 
3 data samples.    

The new typicality and eccentricity based 
data analytics (TEDA) is an alternative statistical 
framework which can work efficiently with any data 
except pure random processes when individual data 
samples (observations) are completely independent 
from each other. For such pure random data the 
traditional probability theory is the best tool to be 
used. However, for real data processes – which are the 
majority of the cases – we argue that TEDA is better 
justified, because it does not rely on assumptions 
which are not satisfied by such processes. 
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The term typicality was used recently [2] to 
describe “the extent to which objects are ‘good 
examples’ of a concept”. By differ from [2] were only 
conceptual, philosophical considerations are made, in 
this paper a systematic mathematical framework is 
introduced.  

Eccentricity can be very useful for anomaly 
detection, image processing, fault detection, etc. 
Both typicality and eccentricity can be very useful for 
development of new clustering, classification, multi-
model prognostic, control, soft sensors, etc.    

In the remainder of this paper the proposed new 
TEDA methodology will be described first in section 
2. In section 3, some simple examples will be provided 
mostly aiming proof of concept. Next, in section 4, an 
anomaly detection approach based on eccentricity will 
be outlined. In section 5 the clustering, classification 
in section 6 and prediction and control in section 7, 
all within the TEDA framework are outlined. Finally, 
section 8 concludes the paper.     

2. Description of the proposed methodology
Let us start with data samples (observations) that 

we may have, xÎRn (where n is the number of features/
characteristics; in Fig. 1 n=2 for illustration purposes; 
in the rest of the paper we will use n=1 without any 
limitations to the concept which is applicable for any 
positive integer). If we have a single or just two data 
samples (observations) there is no much sense to in-
troduce the value of its typicality and eccentricity. It 
will be the only value observed/recorded or the only 
single distance between the two samples, k=2 (they 
will be equally untypical except the extreme case 
when they coincide when they will be equally typical). 
For any number of data samples, k>1 we can define 
the distance between them, d. This distance/proxim-
ity measure can be of any form, e.g. Euclidean, Maha-
lonobis, cosine, Manhattan/city/L1, etc. Let us denote 
the distance between two data samples, xi and xj by dij. 

Fig. 1. A 2D data distribution (A is a rather eccentric 
data point; B – a typical one)

We can also calculate the accumulated proximity/
sum distances, π to all available data samples from 
a given, jth (j>1) data sample calculated when k (k>1) 
data samples are available: 
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The eccentricity of a particular jth (j >1) data sam-

ple calculated when k (k >2) data samples are avail-
able (and they are not all the same by value) is defined 
as the relative (normalised) π of that data sample as 
a fraction of π’s of all other data samples:
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The coefficient 2 is due to the fact that each dis-
tance is counted twice and can be seen as a normalisa-
tion coefficient.

The typicality of the jth (j >1) data sample calculat-
ed when k (k >2) non-identical data samples are avail-
able is defined as the complement of the eccentricity, 
ξ of that data sample:
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It is easy to check that both eccentricity, x and typi-
cality, t are bounded:
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These definitions of eccentricity and typicality 
resemble fuzzy set membership functions since 
being values between 0 and 1, summing up to a value 
larger than 1 (for τ and k=3 it sums up to 1). We can 
also introduce normalised eccentricity and typicality 
which integrate to 1:
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Normalised eccentricity and typicality resemble 
probability distribution function (pdf) in that 
they sum to 1, but they are different as they do not 
require the prior assumptions that are a must for the 
probability theory and they represent both the spatial 
distribution pattern and the frequency of occurrence 
of a data sample. 
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All of the above definitions are applicable to data 
streams (online, when k is incrementally increased). 
In case of data sets (offline, fixed amount of data, k) the 
upper index, k can be omitted in all notations because 
it only indicates based on how many data samples 
the respective value has been calculated. The above 
definitions are global (defined over all available data); 
one can also define local eccentricity and typicality. 
They can also be very useful for local regions, groups/
clusters/data clouds, classes (then summation is only 
over the data samples concerned), see also section 6. 

The typicality can also be seen as an analogue to 
the histograms of distributions, but it is in a closed 
analytical form and does take into account the 
mutual influence of the neighbouring data samples/
observations. When normalised eccentricity is above 
1/k the data sample is rather untypical/eccentric/
anomalous. If the value of typicality is above 1/k then 
the data sample is rather typical. 

It can also be proven that both eccentricity and 
typicality can be calculated recursively by updating 
only the global or local mean, µ and scalar product, 
X for the cases when Euclidean square distance [3], 
[4] is used and similarly if cosine [5] or Mahalonobis 
square distance [6] are used. For example, for the 
Euclidean square distance, without limiting the scope 
of applicability of the typicality and eccentricity in 
general, we have [3], [4]:
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where m– recursively updated (local or global) mean;  
X is the recursively updated scalar product.

Furthermore, we do not need to calculate
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each time, but we can update it recursively by:
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The coefficient 2 is due to the fact that each dis-
tance counts once from the kth point towards the ith 
point and once from the ith point towards the kth point.
It can be proven [12] and it is obvious from (7) that 
the minimum value of eccentricity (and respectively, 
the maximum of the typicality) is obtained for the 
data points that are closer to (or coincide with) the 
mean, mk which is quite logical. It has to be stressed 
that this applies globally as well as locally.   
Now, we can formulate the following recursive 
procedure:

Algorithm 1. TEDA (Euclidean square distance used for d)
Initialise   k=1;  j=1; x1; X x=1 2

1
|| || ; m1 = x1;  p

1
1= 0;

WHILE data points from the data 
stream are available (or until not interrupted) DO

1. Read the next (k:=k+1) data point xk;
2. Update

a. mk from equation (8);

b. Xk from equation (9);

3. For 1£ j£ k compute k
jπ from equation (7);

4. Update ∑
=

k

i

k
i

1
π from equation (10);

5. For 1£ j£ k compute:

a. k
jx from equation (2);

b. k
jt from equation (3);

c. k
jz from equation (5);

d. k
jt from equation (6);

End WHILE 
The recalculation/update of the values of eccentricity 
and typicality based on k data samples from the same 
values based on k–1 data samples (observations) 
can be seen as similar to the posterior probabilities 
update in the Bayesian rule. The prior estimation for 
feasible but not yet observed data points can be done 
by interpolating the existing x, z, t, t. Interpolation 
can be local or global, linear or more complex. 

3. TEDA Primer
Due to the space and time limitations in this 

paper only the basic concept will be laid down and 
several illustrative examples aiming proof of concept. 
Further publications will detail and expand this new 
theoretical framework for objective data analytics. 

Let us consider an extremely simple data stream 
which consists of just three data samples (these may 
be thought of – without limiting the generality of the 
concept – as values of the temperature in oC):

	 y = {20;	12;	10}	 (11)

Obviously, k = 3. We can easily get:

 t= = = = 33 3 3 3
{0.9;0.5;0.6} {0.1;0.5;0.4} {0.45;0.25;0.3}x t V t 

 t= = = = 33 3 3 3
{0.9;0.5;0.6} {0.1;0.5;0.4} {0.45;0.25;0.3}x t V t  (12)

We can see that the sum of eccentricity values is 
= 2 and of the typicality values is =1; they are between 
0 and 1 as expected. Similarly, the normalized 
eccentricity and typicality both sum up to 1 with the 
normalized eccentricity being in the range [0;0.5] and 
normalized typicality- in the range [0;1] as expected. 
Moreover, the normalized typicality of y2 is above 1/3, 
which means it is a typical value of the temperature 
(based on these three observations). We can also 
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see in Fig.2 top line of plots that the eccentricity of 
y1=20°C is substantially higher than that of the other 
data samples and the normalized eccentricity (0.45) 
is >1/3. The typicality of y2=12°C is highest; the 
normalized typicality of y3=10oC is also >1/3, but less 
obvious than that of y2=12°C. 

The above observations are quite logical and, 
importantly, we did not made any prior assumptions 
on the number of data points, their distributions, 
kernels, we did not used any expert or first principles 
knowledge. Yet, we derived objectively the common 
knowledge fact that y1=20°C is rather eccentric, 
unusual (for England), thus, a candidate for anomaly 
being declared while y2=12°C is the most typical one, 
thus, a candidate for a prototype.

If we have an additional observation of 18°C then 
we can estimate posterior values of x, z, t, t using 
the procedure described above and the result will be 
different because it will be based on four data samples 
observed not three (fact, not prior estimation, similar 
to the probability theory’s Bayesian rule), z4: 

 z y= =4
{ ;17} {20,12,10,17} 

We can use the procedure (Algorithm 1) to easily get 
the following:

 { } { }= =4 4
0.6;0.43;0.54;0.43 0.4;0.57;0.46;0.57x t  

(13)

We can check that both x and t sum up to 2 and 
z and t sum up to 1 and that the range of x and t is be-
tween 0 and 1 while of z and t it is between 0 and 1/2. 

We can also observe (compare in Fig. 2 the two lines 
of plots) that by adding just a single point close to the 
data sample that was eccentric the whole pattern is 
changing with all four data samples becoming more 
balanced in terms of their eccentricity and typicality 
with higher normalized typicality of 0.286 (which is 
also notably higher than 1/k=1/4, but not so promi-
nently now), for the two inner samples, z2 = 12°C and 
z4 = 17°C which is quite logical for these observations 
and for the UK climate unlike if these were numbers 
of bingo which would have been completely indepen-
dent indeed. Note that we do not need to assume any 
distribution or to parameterize it a priori. We can 
derive two local distributions around the two data 
samples that have normalized typicality above 1/k, 
namely z2 and z4 but this would be knowledge extract-
ed/learned automatically from the data. 

This is quite logical because now we have two 
very simple groups/data clouds/clusters of data and 
modes of the distribution. It is important to stress 
that even if it is not strongly obvious the two modes of 
the distribution were derived from the data automati-
cally (they both are above 1/k = 1/2), not assumed or 
pre-defined! In TEDA there is no need for prior as-
sumptions. All the useful information is contained in 
the data distribution.  

Finally, let us consider a more realistic data stream 
with a larger amount of data: n14 = {20.2, 3, 6.4, 11.6, 8.2, 
2.2, 11.2,5.2, 6.2,0.2, 1, 4.8, 2.4, 3.8} which represent 
the precipitation (rainfall) measured (in mm) at Fil-
ton station near Bristol, UK in the first two weeks of 
January 2014 [11]. Due to the larger amount (k=14) 
of (still 1D, n=1) data we used the procedure descri-
bed in the Algorithms 1 which is based on the square 

Euclidean distance and re-
cursive calculations. 

It is clearly seen from the 
plots that the high amount 
of rainfall (over 20 mm) on 
the New Years Day is rather 
untypical. It is also untypi-
cal for these first two we-
eks of January 2014 to have 
low level of precipitation, 
close to 0. The most typical 
amount of rainfall for these 
two weeks of January 2014 
was 6.2 mm.

Even with these ex-
tremely simplistic (hand-
crafted) examples the dif-
ference that TEDA brings 
in comparison with the tra-
ditional probability theory, 
deterministic, possibilistic, 
fuzzy and other representa-
tions is obvious. For exam-
ple, traditional probability 
theory would suggest equal 
(1/3 or 1/4) probability for 
all samples (we also do not 

Fig. 2.   The left column represents the eccentricity; the 
right one - typicality; top line of plots corresponds to y 
and the bottom one – to z. Right hand side vertical axes 
on each plot represent the normalized eccentricity/
typicality, z/t resp.)  
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need to build histograms which provide no informa-
tion about (completely ignore) the inter-sample influ-
ence. An alternative which is often (over)used is to 
impose/assume a distribution or a kernel, for exam-
ple Gaussian/normal or another type, to determine 
its parameters (where to position it, how much will 
be the spread). To escape these problems, sometimes, 
one can also use a mixture of distributions, but then 
the parameters that need to be determined are even 
more and the problem is not fully solved as the distri-
butions are approximations of the real/true ones. On 
the other hand, in comparison with the fuzzy set the-
ory [7] we do not need to ask experts, to build mem-
bership functions. What we only need is to calculate 
the eccentricity and typicality of each observation and 
we get (recursively/computationally efficiently using 
(7)–(10)) in a closed analytical form (equations (2)–
(3)) the distributions.

Moreover, the information that we have in x and t 
(resp. z and t) is closer to the nature of real processes 
(not the pure random ones and not subjective ones, 
for which the traditional probability and fuzzy set 
theories, respectively are more appropriate). In 
particular, from Fig. 2 we can see that y2 = 12°C is the 
most typical data sample, but its degree of typicality 
is significantly reduced if another sample is added. 
On the contrary, the data sample/observation 
y1=20°C is rather eccentric initially but becomes 
neutral (both typicality and eccentricity are about 
1/k) when we add the fourth sample. Now, if we try 
to answer the question, “What is the most typical or 
likely temperature (or amount of rainfall) based on the 
observations we have (y and z for the temperature and 
the real observations of the rainfall, v)”. TEDA suggests 
that based on 3 observations, y the most typical/likely 
temperature is 12°C (t=t=0.5 that is 50%). Based on 
the same limited number of observations we can 
also conclude that to have a temperature 10°C is also 
not untypical (t=t=0.4 that is 40%), but this is now 
much closer to 1/k=1/3. To have a temperature 20°C 
is possible, but not very typical for England (t=t=0.1 
that is 10% based on these three observations). If we 
have another observation of z4=17°C, however the 
typicality changes significantly (t=0.2 that is 20%) 

because it is now based 
on a quite different 
(balanced) data pattern, 
but this is still below the 
1/k level which means 
that it is still untypical 
(but less so based on 
these four observations 
in comparison with 
the three observations 
only). 

For the same 
observations the 
traditional probability 

theory [1] would suggest p=1/3 (same for all the 
3 observations) or we would need to choose and 
parameterize distribution(s). However, the problems 
of how many distributions to consider, which type 
of distributions to use for particular data sets, what 
their parameters are left for the problem solver 
to decide. Many prefer to approximate the real/
true distributions with some smooth functions 
(such as Gaussian and others), but these are just 
approximations. 

The reason for the difference between TEDA 
and the traditional probability theory is the spatial 
awareness which in the traditional probability theory 
is ignored, but in real processes is a fact. For example, 
for the very simplistic example we considered above, 
2 data samples are quite close and influence each 
other. TEDA offers instead an automatic mechanism 
to extract the real/true data distributions and a closed 
analytical recursive form (which can be differentiated 
and analyzed) and this is dictated by the data pattern, 
not pre-defined or assumed. In addition, it does take 
into account inter-sample influence which is typical 
for real processes (not pure random ones).

4.  Anomaly Detection Based on Eccentricity
Anomaly detection in TEDA can easily and intuitively be 
done on the basis of eccentricity. For example, any data 
sample that has high normalised eccentricity (ξ>1/k) 
is a suspected anomaly. Different algorithms can be 
developed and applied to image processing and video 
analytics, fault detection, user behaviour modelling, 
etc. One can take into account not only the absolute 
value of x and z, but also the context of the problem 
at hand. However, the eccentricity offers new angle of 
view towards the problems in comparison with the 
traditionally used probability because of the reasons 
mentioned above. For example, the eccentricity of the 
data sample/observation y1=20oC is much higher than 
that of the other data samples but the probability of 
all samples is equal (1/3). No distributions or kernels 
needs to be assumed, no need to have large amount of 
data, the distribution of typicality and eccentricity can 
be extracted from the data in a closed analytical form, 
(2)–(3), and is exact (not approximated), recursively 
updated. One emerging area of research and interest 
for the society is the study of extreme natural and 
man-made (anthropogenic) events (including, but 

Fig. 3 Real rainfall data from Bristol, UK, first two weeks 
of January, 2014. The notations are same as in Figure 2
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not limited to climate, volcanoes, earthquakes, 
tsunami, nuclear and other disasters, terrorism, etc.) 
– traditional probability theory is limited in studying 
the probability of occurrence of such events and 
this is also limited by the amount of available data, 
representativeness of the ‘training data’ which in 
such problems are a bottleneck, distributions which 
are not normal etc. TEDA framework offers not only 
a convenient approach to easily detect anomalies, but 
also to estimate the degree of severity (how bigger ζ is 
in comparison with 1/k and, respectively, how smaller 
τ is in comparison with 1/k).
    
5. Clustering and Data Clouds Based on 

Typicality
Clustering is an important part of pattern 

recognition, machine learning, data mining [1] and 
many other related areas, including autonomous 
learning systems [3]. The term “data cloud” was 
introduced in the so called AnYa framework [8] and 
differs from clusters by the fact that data clouds have 
no specific shape, parameters, and boundaries. In 
TEDA, data clouds (or clustering if that is the preferred 
form of data partitioning) can be formed on the basis 
of the typicality. For example, data sample that has 
the highest t is logical to be selected as the focal 
point/prototype or a centre of the first data cloud 
(or cluster). There can be different ways to form the 
other data clouds (or clusters) but their focal points/
prototypes (or centres) will also have high typicality 
(e.g. it is logical to require τ>1/k). For example, a zone 
of influence/radius can be defined and the data points 
that are outside the zone of influence/radius of the 
data point with the maximum τ (τmax) and have τ>1/k 
can be considered as candidates to be prototypes/
focal points of the next data clouds/clusters and the 
point with the maximum τ but out of these points 
only (except the data points that fall in the zone of 
influence associated with the previous focal point(s)) 
will, be the obvious new focal point, etc. until there 
are points that satisfy these conditions.    

It is important to stress that within TEDA 
framework one can extract automatically and 
recursively closed form analytical expressions 
of the real/true distributions of local typicality 
and eccentricity with the former resembling the 
membership functions or pdf but being conceptually 
different (we can argue richer because it takes into 
account objectively both the frequency of occurrence 
and the spatial distribution and mutual influences). For 
example, if we have data of two clusters/data clouds, 
say coloured blue and red, we can automatically and 
recursively extract from the real data distribution, xred, 
tred, and  xblue, tblue. 

In an online and evolving scenario in the memory 
only the accumulated values per data cloud/cluster 
can be kept (not for each data sample – see steps 2 and 
4 of the TEDA procedure (Algorithm1 in section 2) – 
these include: 

 xi*, mi*, Xi*, ∑
=

k

i

k
i

1

π ;  

where i* denotes the index of the data cloud/cluster 
prototype/focal point. The typicality and eccentricity 
can be updated for the current, kth data point only plus 
for the data cloud/cluster prototypes, centres, not for 
all past, k data (see steps 3 and 5 of the procedure). 
An important aspect is the dynamic nature of the data 
streams and their order dependency. One can chose 
to have a forgetting factor or mechanism to introdu-
ce the importance of the time instances when a parti-
cular data sample was read. This is important for data 
streams.   

6. Classification based on typicality
Classification is another central element of pattern 

recognition, machine learning, data mining [1]. With-
in the TEDA framework classification can be done us-
ing local (instead of global) values for x, t, z, and t. The 
main difference between the global and local expres-
sions is the summation limits – the data samples over 
which the summation is performed. In the global case, 
it is performed over all available (by this moment in 
time) data samples, k. In the local case, the summation 
is over a group of data samples from a particular class 
or data cloud/cluster (in general, there may be more 
than one data cloud/cluster per class [3]); say, if we 
have data for healthy and ill patients, good and bad 
examples of something etc. we can accumulate data 
samples/observations for each one separately and 
get in this way, x good,tgood, and xbad,tbad. Then the classifi-
ers of zero, first or higher order can be built similarly 
to the AutoClass concept described in [3, chapter 8]. 
Zero order classifier means using the label of the clas-
sifier (singleton) as an output. First order means us-
ing a regression style classifier where for each data 
cloud/cluster a separate linear regression function 
over the input features is generated. Higher order 
classifiers may have non-linear output. In all cases the 
input part of the classifier can be seen as a cluster-
ing or data clouds (or simply data partitioning) which 
was described in the previous section. Zero order 
classifiers are more attractive from the point of view 
that they are easier to interpret and can be fully unsu-
pervised [9]. First order classifiers, on the other hand, 
can lead to a better performance [10]. 

    
7. Prediction (and Control) Based 

on Typicality
Predictive models and controllers can be built us-

ing the multi-model principle where each local sub-
model is quite simple (e.g. linear or even zero order 
singleton) [3]. The problem then translates to the de-
composition of the data space into (possibly overlap-
ping) local regions in which often overlapping regimes 
and local behaviours is easier to define and tune. This 
problem on its own has been demonstrated to be 
possible to successfully address using clustering (or 
forming data clouds) in [3]. Clustering was described 
earlier in section 5, therefore, due to the lack of space 
in this paper we will limit to just pointing towards 
the applicability of TEDA framework to develop and 
design new predictors and controllers which are not 
based on the traditional probability theory and, thus, 
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do not suffer from the limitations and assumptions on 
which it is based, e.g. normal or known distribution 
of the variables, (in)dependence of the data samples/
observations, their limited (not infinite) amount, etc. 
Moreover, the proposed TEDA framework makes pos-
sible to extract recursively in a closed analytical form 
the exact distributions from the real data.   

8. Conclusions
In this paper, a new systematic framework for 

data analytics, based on the typicality- and eccentri-
city of the data is proposed which is spatially-aware, 
non-frequentist and non-parametric. The proposed 
new typicality- and eccentricity-based data analytics 
(TEDA) framework is free from prior assumptions 
(such as Gaussian or any other specific distribution of 
the data, the need to have subjectively defined mem-
bership functions, kernels, specific proximity/distan-
ce measures, availability of infinite amount of data, in-
dependence of the data samples, etc.). Both, typicality 
and eccentricity can be calculated by computationally 
efficient recursive formulas. Typicality resembles fuz-
zy membership functions (having maximum 1) but is 
objectively derived from the data pattern (not due to 
prior assumptions). Normalised typicality resembles 
pdf (having a sum/integral equal to 1) but is spatially-
aware. TEDA does not require any prior assumptions 
and in a more natural manner represents the real (not 
purely random) processes, such as climate, econom-
ics, industrial processes. TEDA requires no prior as-
sumptions and provides close analytical expression 
and extracts multimodal distributions entirely from 
the data. It can be used for development of a range 
of methods for anomalies and fault detection, image 
processing, clustering, classification, prediction, con-
trol, filtering, regression, etc. In this paper due to the 
space limitations, only few illustrative examples are 
provided aiming proof of concept.    
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