
UNIWERSYTET TECHNOLOGICZNO-PRZYRODNICZY
IM. JANA I JĘDRZEJA ŚNIADECKICH W BYDGOSZCZY

 ZESZYTY NAUKOWE NR 267
TELEKOMUNIKACJA I ELEKTRONIKA 20 (2017) 5-14

THE USAGE OF NEURAL NETWORKS TO FORECAST
FOR CHURN OF TELECOMMUNICATIONS CLIENTS

Przemysław Wojda

Warsaw University of Technology, Faculty of Electronics and Information Technology
Nowowiejska 15/19, 00-665 Warsaw, Poland

Summary. This paper presents an attempt to use an artificial neural network to
investigate the churn phenomenon among the customers of a telecommunications
operator. An attempt was made to create a data model based on the customer lifetime
value (CLV) rather than on activity alone. A multilayered artificial neural network was
used for the experiments. The results yielded a 99% successful identification rate for
customers in no danger of leaving, while only 57% of those identified as in danger of
leaving actually did so and stopped using the company's services.

Keywords: churn, artificial neural network, ANN, CLV, telecommunications

1. INTRODUCTION

The churn phenomenon is defined as discontinuing the use of a company's
services. This most commonly means that the customer has chosen another company
because it seems more attractive. A customer leaving translates into costs not only in the
form of non-generated revenue but also the cost of acquiring a new customer to replace
the one who left. Therefore, this phenomenon has no benefit and should be prevented.
There are several methods [1, 3, 5] designed to provide an early warning signal for
groups of customers in danger of leaving. The decisive factor for their effectiveness is
the selection of an appropriate set of data for effective research. The most well-known
models focus on statistical data analysis in order to eliminate noise and maximize the
usefulness of the variables engaged in classification. However, it is important to know
the total value of the CLV, or Customer Lifetime Value [4, 6]. It is not enough to know
which customers may leave; it is also important whether keeping them is financially
viable in terms of the revenue that they may generate. This study attempts to apply this
approach to the company's actual customer base.

2. DATA ANALYSIS

The company is one of the leading company on the Polish market of hosted
telecommunication services (SaaS) for small and medium business (SMEs) as well as
individuals. It provides IP telephony (voice calls) and value added services like call center,

6 Przemysław Wojda

IVR, calls recorder. The company also provides its own telecommunication platform for
other telco providers. It won many awards for its innovative products. The company
provides postpaid and prepaid services using two different technological platforms. The
services are offered within domains corresponding to independent offers. The data was
acquired from the company’s data centers and these are call detail records (CDR) and the
information about the payments of the customers. To fully understand the figures presented
below, the proper definition of CDR should be quoted: it is a data record produced by a
telephone exchange or other telecommunications equipment that documents the details of a
telephone call or other telecommunications transaction (e.g., text message) that passes
through that facility or device. The record contains various attributes of the call, such as
time, duration, completion status, source number, and destination number.

Based on the number of active users, generated traffic and revenue, the surveyed
dataset was narrowed down. As a result, the research covers the period between January
2013 and June 2015 and only includes prepaid services in domain no. 1.

The collected dataset was then analyzed according to customer activity on
a monthly basis. Activity in the monthly data is defined as follows:
1. At least one event in terms of either inbound or outbound traffic,
2. At least one financial document registered on the customer's account.

Based on this definition, for each customer who stopped using the company's
services during the period under research, the number of months in which he or she
remained active was determined. Knowing the customer's last month of activity, the
next step was to analyze the characteristics of the traffic generated regarding customers
who are still active.

For example, for customers whose last month of service was January 2015, the
activity rate for outbound and inbound traffic is as follows (Fig. 1).

Fig. 1. Median product of duration and number of outgoing and incoming calls as a function of time

(Source: own study)

 The usage of neural networks to forecast for churn of telecommunications clients 7

However, for customers who continued using the service (Fig. 2).

Fig. 2. Median product of duration and number of outgoing and incoming calls as a function of time

(Source: own study)

Both graphs show a downward trend (a phenomenon familiar to the company in the
case of the service under research), but for active customers, the lines remain far above zero.

Fig. 3. Average number of different numbers to which connections were made in a given month

(Source: own study)

8 Przemysław Wojda

An analogy can be observed by analyzing the variety of connections (the number
of different numbers to which the connections were made). For the same period, for
customers who left (Fig. 3).

However, for customers who remained active (Fig. 4).

Fig. 4. Average number of different numbers to which connections were made in a given month
(Source: own study)

The final conclusions from the data research stage are as follows:
a) the number and duration of connections, both for outbound and inbound traffic

approach zero,
b) the number and amount of credit-enhancing as well as debit-related financial

documents approach zero,
c) the variety of outbound and inbound connections clearly decreases as the customer's

last month of activity approaches,
d) when a customer moves closer towards the end of his or her activity, the traffic is

generated by a decreasing number of numbers in the customer's possession.

 The usage of neural networks to forecast for churn of telecommunications clients 9

3. INPUT DATA

Based on the above analysis, the following customer characteristics were
established in order to create the neural network model:
a) the number of active months – the number of months from the first month to the last

month in which the customer was active,
b) outbound traffic measurement – the product of the number of outbound connections

and their duration over a period of one month,
c) inbound traffic measurement – the product of the number of inbound connections

and their duration within a month,
d) measurement of traffic within a group of customer numbers – the product of the

number of connections between customer numbers and their duration within a month,
e) measurement of the size of the group of customer numbers – for numbers belonging

to a customer group, the sum of the numbers of outbound connections and the
number of numbers to which inbound connections were made within a month,

f) measurement of the diversity of external numbers – for the numbers belonging to the
customer, the sum of the numbers of the outbound connections and the number of
numbers from which inbound connections were made within a month,

g) measurement of credit increase – the product of the number of credit-enhancing
documents and their amounts within a month,

h) measurement of credit reduction – the product of the number of documents
decreasing credit and their amounts within a month,

i) measurement of debit reduction – the product of the number of documents
decreasing debit and their amounts within a month.

4. DATA CLEANSING

For the purposes of the cleansing and future categorization of the collected data,
the following auxiliary features were introduced:
a) activity – the total number of outbound and inbound connections and number of

events increasing credit and decreasing debit in a given month,
b) current activity – sum total since the beginning of a group's activity,
c) current number of the month – the month in which the activity is researched,
d) future activity – activity in the period following the current month under research,

within the available data,
e) future number of months – the number of active months in the period following the

current month under research, within the available data,
f) variation coefficient [2], defined as the ratio of the standard deviation to the mean of

the characteristic considered in terms of the group.

Next, data regarding any groups that met the following criteria were removed from
the set:
a) breaks in activity of longer than a month,
b) total known activity less than the mean activity for all groups,
c) total known activity greater than the mean activity for all groups,
d) activity coefficient less than the median for all groups,
e) coefficient of activity variation greater than the mean for all groups.

10 Przemysław Wojda

5. CATEGORIES

For the purpose of assigning the collected data to categories, another feature was
defined – group utilization. This attribute is defined as the ratio of the current activity of
the group to the total known activity of the group. The value of the feature is within the
range of <0; 1>, with a value of 1 reached in the last known month of activity. Based on
the available data, the following categories were introduced:
• DEAD – an inactive customer, the utilization measurement equals 1;
• CHURN – the customer will become inactive within three months, the utilization

measurement is within (0,96;1);
• ALIVE – an active customer.

The key category is CHURN – the correct classification of a customer to this
category indicates that the customer is in danger of leaving within three months.

6. EXPERIMENTS

The study was based on a feedforward artificial neural network, multilayer
perceptron because of its proven effectiveness in problem classification. Experiments
were conducted with varying numbers of neurons and different activation functions in
the hidden layer. The influence of constant bias and more than one hidden layer on the
results was studied. Different methods of network training were also applied, with
particular emphasis on different variants of the reverse resonance algorithm (Manhattan,
Resilient).

The most important element of the assessment of the usefulness of the network
was the error obtained on the set testing (not used for training). It should be noted that
almost 100% matching the network to the teaching set will generally be associated with
the phenomenon of over-matching and the error obtained on the test set will be
disproportionately large. In order to avoid this phenomenon cross-validation was used.
This extends the network training process but the obtained model is less susceptible to
excessive fit. In other words, cross-validation was used to evaluate the results of the
network, while the goal was to minimize the mean squared error during training.
Finally, the best results (7.21% error in the test set, 84.79% of the examples correctly
classified) were obtained with a network with the following parameters (Table 1).

 Table 1. Network parameters

Layer Number of neurons Activation function Bias

1 26 Linear No

2 11 Logarythmic Yes

3 3 Softmax Yes

Table 2 shows the results for the test set used (the number of examples depending
on the category allocated).

 The usage of neural networks to forecast for churn of telecommunications clients 11

 Table 2. Network topology

Actual category Allocated category Share in test set (%)

ALIVE ALIVE 13,807531

ALIVE CHURN 0,13947

ALIVE DEAD 0

CHURN ALIVE 0,13947

CHURN CHURN 11,018131

CHURN DEAD 8,089261

DEAD ALIVE 0

DEAD CHURN 6,834031

DEAD DEAD 59,972106

The results are shown in the Fig. 5.

Fig. 5. Summary of the obtained results (Source: own study)

The observed error is mainly due to misclassification:
a) CHURN as DEAD (8,09% of cases),
b) DEAD as CHURN (6,83% of cases).

A positive aspect is the correct recognition of the ALIVE category.

ALIVE ALIVE

ALIVE CHURN

ALIVE DEAD

CHURN ALIVE

CHURN CHURN

CHURN DEAD

DEAD ALIVE

DEAD CHURN

DEAD DEAD

12 Przemysław Wojda

Table 3. The percentage of correctly classified examples within a given class

Class Correct classification (%)

ALIVE 99

CHURN 57,24

DEAD 89,77

7. FINAL CONCLUSIONS

The results are debatable. On the one hand, almost 99% of the customers who did
not plan to stop using the service in the next three months were identified. On the other
hand, among the group identified as customers in danger of leaving only 57% did in fact
stop using the service. The key factor in obtaining the results was to define the model
used for the study. According to the author, the model created is applicable to a rough
screening of cases that do not raise any suspicion. More precise forecasts require the
creation of separate, event-specific models focused on the particular phenomena that
influence a customer's decision to move to another service provider. The use of such
a combined approach (a rough identification of the risk group followed by an
examination of specific symptoms) would result in a high precision churn forecasting
tool.

The churn phenomenon has many aspects and the presented study was just an
attempt to investigate the problem from a selected perspective (customer activity).
However, the author is convinced that it is possible to use neural networks for detecting
the phenomenon of churn. The research carried out shows that the most important is the
way of presenting the problem to be solved. Universal classification possibilities (or
regression) offered by the neural network are not a limitation here and their use is in the
key issue of implementation.

This study can be used as a first step towards creation of a tool that allows the
practical use of neural networks for recognition complex dependencies in the data about
the company's clients. According to the author, this requires conducting extensive
analyzes aimed at determining specific phenomena and patterns behaviors that are in the
sphere of interest. This requires knowledge of specifics of the products and the way they
are used.

BIBLIOGRAPHY

[1] Ahmed A., Linen D.M., 2017. A review and analysis of churn prediction methods
for customer retention in telecom industries.

[2] Abdi H., 2010. Coefficient of Variation.
[3] Ljungehed J., 2017. Predicting Customer Churn Using Recurrent Neural Networks.

School of Computer Science and Communication, Stockholm, Sverige.
[4] Hosseni M.B., Tarokh M.J., 2011. Customer Segmentation Using CLV Elements.

Information Technology Group, Industrial Engineering Department, K.N. Toosi
University of Technology, Tehran, Iran.

 The usage of neural networks to forecast for churn of telecommunications clients 13

[5] Vafeiadis T., Diamantaras K.I., Sarigiannidis G., Chatzisavvas K.Ch., 2015.
A comparison of machine learning techniques for customer churn prediction.

[6] Zhang Y., Qi J., Shu H., Li Y., 2006. Predicting Churn Probability of Fixed-line
Subscriber with Limited Information: A Data Mining Paradigm for Enterprise
Computing. [In:] Tjoa A.M., Xu L., Chaudhry S.S. (eds.), Research and Practical
Issues of Enterprise Information Systems. IFIP International Federation for
Information Processing, vol. 205, Springer, Boston, MA.

WYKORZYSTANIE SZTUCZNYCH SIECI NEURONOWYCH
DO PROGNOZOWANIA ZJAWISKA CHURN WŚRÓD KLIENTÓW

USŁUG TELEKOMUNIKACYJNYCH

Streszczenie

W pracy przedstawiono próbę wykorzystania sztucznej sieci neuronowej do
badania zjawiska churn wśród klientów operatora telekomunikacyjnego. Podjęto
próbę stworzenia modelu danych opartego o całkowitą wartość klienta (CLV),
a nie tylko jego aktywność. Do przeprowadzenia eksperymentów wykorzystana
została wielowarstwowa sztuczna sieć neuronowa. Uzyskano 99% skuteczność
identyfikowania klientów nie zagrożonych odejściem, natomiast tylko 57%
klientów wskazanych jako zagrożonych odejściem w rzeczywistości zaprzestało
korzystania z usług firmy.

Słowa kluczowe: churn, sztuczne sieci neuronowe, ANN, CLV, telekomunikacja

UNIWERSYTET TECHNOLOGICZNO-PRZYRODNICZY
IM. JANA I JĘDRZEJA ŚNIADECKICH W BYDGOSZCZY

 ZESZYTY NAUKOWE NR 267
 TELEKOMUNIKACJA I ELEKTRONIKA 20 (2017) 15-24

OBJECT TRACKING METHODS COMPARISON

Daniel Bujnowski, Agata Giełczyk

UTP University of Science and Technology,
Faculty of Telecommunications, Computer Science and Electrical Engineering,

Al. prof. S. Kaliskiego 7, 85-796 Bydgoszcz, Poland
daniel.bujnowski@utp.edu.pl, agata.gielczyk@utp.edu.pl

Summary. Object tracking has been improved recently and now it seems to be one
of the most challenging task in a computer vision area. In this article there are
presented five top state-of-art algorithms. There were tested and the comparison
of their results was performed and presented in plots and tables. A precision and
an accuracy were evaluated, while some intruding factors, like rotations or
blurring, were observed.

Keywords: object tracking, image processing, artificial intelligence

1. INTRODUCTION

Visual tracking is one of the most crucial problems in the computer vision. It can
be a very time consuming process and due to this fact, has to be developed. Visual
tracking may be applied in various systems like: in a traffic management system as
stated by Coifman et al. in [4], in medical diagnostics as described by Yang et al. in
[19] or in some security issues like tracking an object by an unmanned aerial vehicle
proposed by Pestana et al. in [13]. The applications are crucial for security and health
issues, thus is a critical problem in the computer vision. Tracking algorithms have to be
robust to different factors that may appear. According to Yang et al. [18] the following
things may intrude the tracking process:
1) motion blur,
2) noise in an image,
3) representing the real 3D world in the 2D image,
4) covering or partially covering the object,
5) illumination changes,
6) scale change,
7) deformations,
8) real-time processing requirements.

Due to the variety of the object tracking methods, the accuracy and the precision
researches were performed to choose the most appropriate one. Moreover, above
mentioned intruding factors were analysed.

16 Daniel Bujnowski, Agata Giełczyk

The paper is organized as follows: in Section 2 popular tracking algorithms are
presented. Section 3 contains the description of researches done with the results
presented in plots and tables. Conclusions are provided afterwards.

2. OBJECT TRACKING ALGORITHMS
2.1. Main steps of image analysis

The most basic steps of image processing are similar for many applications. They
are also implemented in object tracking and may be presented as following [12, 14]:
1. Image acquisition – image can be delivered to the system either from the camera or

from the file.
2. Pre-processing – there are simple morphological operations that may improve the

image or reduce noises like: filters, erosion, dilation, wave transformations. This
step may include also image segmentation when each image is divided into classes,
the most basic situation is using two classes: a background and a foreground.
Segmentation may be performed in the simplest way by thresholding.

3. Features extraction – based on the pre-processed image it is possible to find some
key points and find distinguishing features.

4. Recognition and matching – using the features it is possible to identify the object
visible in the image.

2.2. Kernelized Correlation Fiter and Dual Correlation Filter

Kernelized Correlation Filter (KCF) and Dual Correlation Filter (DCF) were
proposed by Henriques et al. in 2012 and developed in 2015 [9, 10]. The clue of them is
using a special kind of the Toeplitz matrix, the circulant matrix (presented in Eq. 1.) to
improve the detection in detection-based tracking. After giving the target parameters
(i.e., position) in the first frame, the tracked region is fixed around the target. The region
is 2.5 times bigger than the object but provides not only positive samples. Then, the
features are extracted from the whole region. Each channel is weighted by a cosine
window, which smooths the borders. A circulant matrix is essential for finding all
possible either horizontal or vertical shifts of the target, which are presented in Fig. 1.

ሻݔሺܥ = 	 ێێێۏ
ۍ ଵݔ ଶݔ ଷݔ ⋯ ௡ݔ௡ݔ ଵݔ ଶݔ ⋯ ௡ିଵݔ௡ିଵݔ ௡ݔ ଵݔ ⋯ ⋮௡ିଶݔ ⋮ ⋮ ⋱ ଶݔ⋮ ଷݔ ସݔ ⋯ ଵݔ ۑۑۑے

ې
 (1)

 Object tracking methods comparison 17

Fig. 1. Possible vertical shifts with the cosine window enhancement (Source: own study)

Thanks to their robustness and effectiveness KCF and DCF are widely
implemented. MATLAB codes were provided in papers in order to enable faster
progress in object tracking area. Thus, there are plenty of algorithms extensions
available [15, 21].

2.3. Compressive Tracking
Due to some factors like position variation, illumination variation or motion blur,

tracking algorithms have been constantly developed. The Compressive Tracking (CT)
algorithm was proposed by Zhang et al. in 2012 [20]. It is supposed to be robust to all
above mentioned factors. The main idea of the algorithm is presented in Fig. 2.

Fig. 2. The main idea of CT algorithm [20]

The problem of tracking is presented as a detection task in the CT algorithm. In the
first frame the object detection is performed. Then positive samples are searched in the
nearest neighbourhood of the detected object. The locations far away from the object are
assumed as negative samples. Both positive and negative samples are used to update the
classifier. In order to ensure the robustness to the scale variation, each sample is
convolved with the multiscale rectangle filters and to improve the effectiveness the
Haar-like features [16] are compressively sensed with a sparse measurement matrix.

2.4. Structured Output Tracking with Kernels

Structured Output Tracking with Kernels (Struck) algorithm was proposed by Hare
et al. in 2011 and developed in 2014 and 2016 [6-8]. This algorithm differs from the

18 Daniel Bujnowski, Agata Giełczyk

other state-of-art methods in learning approach. Commonly, a set of samples is
generated and then its type is graded (positive or negative). The Struck approach does
not use these steps, but uses only the output, which is illustrated in the Fig. 3A.

The algorithm uses six types of Haar-like features, which are presented in Fig. 3B.
Numbers visible in the image are not normalised weights used for calculating the
features. Then, features are normalised in the range ሾെ1,1ሿ and stored in a features
vector. The length of the vector is 192.

Fig. 3. A) The difference in approach between Struct algorithm and other state-of-art
methods [14], B) Types of Haar-like features used by Struct [6]

2.5. Multiple Instance Learning
Multiple Instance Learning (MIL) is a variation of supervised learning. The

algorithm was proposed by Dietterich in 1997 [5]. The main idea of this algorithm is
using sets, often called bags, during training. Boolean labels are assigned to the whole
bag instead of a single instance. When the bag has at least one positive instance, it is
positive (value 1). Otherwise, while the bag has not any positive instance, it is negative
(value 0). The keychain example, which is illustrated in Fig. 4, may be useful for the
MIL algorithm presentation. Each person has their own chain of keys. However, not
everyone is able to enter each room. The problem to solve is finding the proper key that
enables an entrance to the room. To solve this problem it is needed to find the key that
is included in all positive chains.

Training data contains examples ሼݔଵ, ,ଶݔ … , ,ଵݕ௡ሽ and labels ሼݔ ,ଶݕ … , ௜ݔ ௡ሽ, whereݕ ∈ ܺ and ݕ௜ ∈ ܻ. ܺ is the set of examples, while ܻ = ሼ0,1ሽ. The aim is to learn the
classifier in order to predict the proper labels for new instances outside the collection ܺ,

 Object tracking methods comparison 19

using the function ݄ሺܺሻ: ܺ → ܻ [2]. Currently, datasets are prepared carefully to
provide the best training examples. The object is cropped to its borders in order to
distinguish the foreground from the background. The object has to be analysed also in
a different scale or from a different point of view.

Fig. 4. The main idea of MIL presented in the keychain example [1]

The MIL algorithm is widely used thanks to its effectiveness. Recently, it was
implemented for instance in medicine for mammogram classification [22], for genetic
RNA analysis [3] or for text classification [11].

3. RESULTS

3.1. Evaluated parameters

The abovementioned algorithms were implemented in MATLAB and tested. The
dataset used during the research was the Visual Tracker Benchmark available online
[17]. It contains 100 examples of image sequences. The text file, which contains the
position of the target (along x and y axis) and the size of the target (width and height), is
also provided. Each sequence has some intruding factors like: illumination variation,
motion blur or scale variation and others.

Sequences were evaluated due to three parameters. The first one was the distance
between the detected position and real position expressed in pixels. An ideal case is
having the distance equals to 0. The second one was the Pascal parameter, which is
expressed in Eq. 2. Each frame was marked as positive when ܽ଴ ൐ 0,5. Otherwise, it
was negative. The most desirable situation is having the parameter close to 1. ܽ଴ = ௔௥௘௔	ሺௗ௘௧௘௖௧௘ௗ	∩	௥௘௔௟ሻ௔௥௘௔	ሺௗ௘௧௘௖௧௘ௗ	∪	௥௘௔௟ሻ (2)

The last but not least parameter was precision, which was evaluated for the whole
sequence. It is presented in Eq. 3, where ݊ – a total number of frames in the sequence, ݅ – number of frames with the distance between the real and the detected position is in
a range ሾ0, ݎ ሿ whileݎ ∈ ሾ1,50ሿ. ݈݀݋݄ݏ݁ݎݐ = ௜ೝ௡ (3)

20 Daniel Bujnowski, Agata Giełczyk

An example of the analysed sequence is presented in Figure 5. In the sequence
called Surfer there are five factors which are making the tracking process harder: scale
variation, fast motion, low image resolution, target rotation inside and outside the
image.

Fig. 5. Frames 0001 (A), 0075 (B), 0150 (C), 0225 (D), 0300 (E) and 0375 (F) of the sequence
Surfer [17]

3.2. Obtained results

During the experiment all before mentioned algorithms were tested against each
other. The experiment was performed on PC (CPU: Intel Core i7-6700hq 2.6GHz,
RAM: 16GB, GPU: GeForce GTX 960M). Processing evaluations relied only on CPU.
The results are presented in Table 1. Moreover, for each sequence, the set of three plots
were created (presenting distance, Pascal and precision parameters).

Table 1. Obtained results

 Distance [px] Pascal [%] Precision [%]
Struct 25,33 65 67
KCF 12,71 66 69
DCF 27,00 63 64
CT 50,58 31 29
MIL 48,73 40 39

Three plots presented in Fig. 6 refer to the sequence tracking the helmet of the

soccer player. Some frames taken from this sequence are also presented in Fig. 6. Each
algorithm works almost in the same way till the moment of crash between the tracked
helmet and the other similar one. Then, some algorithms started to track the helmet of
the opposite player. Precision is also very similar, most of algorithms get over 60%.

 Object tracking methods comparison 21

Fig. 6. A) Plot of distance, B) Plot of Pascal parameter, C) Plot of precision, D), E), F) sample
frames from the sequence soccer (Source: own study)

Plots and frames presented in Fig. 7 refer to the most problematic sequence. Some
frames taken from this sequence are presented in Fig 7. In the sequence there were some
intruding factors like: illumination variation, object’s size changing, specific light
(coming from the background of the frames) and angle variations. Due to this factors,
none of tested algorithms was able to track object successfully. The average parameters
were 28% of Pascal and 13% of precision. Unfortunately, most algorithms were not able
to detect the object’s size variation. That is why the Pascal parameter has that low value.

Fig. 7. A) Plot of distance, B) Plot of Pascal parameter, C) Plot of precision, D), E), F) sample
frames from the sequence singer (Source: own study)

The last but not least group of three plots presents sequence with the moving car.
In the frame 160 the car was hidden behind a tree. It is visible that algorithms MIL and
Struct missed the tracked object. However, the Struct algorithm was able to detect the
object again faster.

22 Daniel Bujnowski, Agata Giełczyk

The most desirable algorithm should give the minimal distance and in the same
time: maximal Pascal parameter and precision. As it is visible in Table 1, the best
results were obtained using the KCF algorithm.

Fig. 8. A) Plot of distance, B) Plot of Pascal parameter, C) Plot of precision, D), E), F) sample
frames from the sequence carscale (Source: own study)

4. CONCLUSIONS

The performed experiment shown algorithm KCF as the most accurate form all
tested algorithms. It had the higher precision rate = 69%, the highest Pascal parameter =
= 66% and the smallest distance parameter = 12.71. Moreover, the standard deviation
for distance was only 6 pixels, while the others gave standard deviation greater than
30 pixels. Apart of accuracy, it is noticeable that MIL algorithm was significantly
slower than rest of tested algorithms. It used over one second more for processing of
a single frame.

Nevertheless, the 69% level of precision obtained using the KCF algorithm is still
not enough for some crucial applications – security, borders controlling or the military
purpose. That is why the object tracking methods should be developed. It seems to be
also very promising to combine the object tracking methods with the colour tracking.

BIBLIOGRAPHY

[1] Babenko B., 2008. Multiple instance learning: algorithms and applications. View
Artic. PubMedNCBI Google Sch.

[2] Babenko B., Yang M.-H., Belongie S., 2009. Visual tracking with online multiple
instance learning. [In:] Computer Vision and Pattern Recognition, CVPR 2009.
IEEE Conference on. IEEE, 983-990.

[3] Bandyopadhyay S., Ghosh D., Mitra R., Zhao Z., 2015. MBSTAR: multiple
instance learning for predicting specific functional binding sites in microRNA
targets. Sci. Rep. 5, 8004.

 Object tracking methods comparison 23

[4] Coifman B., Beymer D., McLauchlan P., Malik J., 1998. A real-time computer
vision system for vehicle tracking and traffic surveillance. Transp. Res. Part C
Emerg. Technol. 6, 271-288 .

[5] Dietterich T.G., Lathrop R.H., Lozano-Pérez T., 1997. Solving the multiple
instance problem with axis-parallel rectangles. Artif. Intell. 89, 31-71.

[6] Hare S., Golodetz S., Saffari A., Vineet V., Cheng M.-M., Hicks S.L., Torr P.H.S.,
2016. Struck: Structured Output Tracking with Kernels. IEEE Trans. Pattern Anal.
Mach. Intell. 38, 2096-2109.

[7] Hare S., Saffari A., Golodetz S., 2014. Struck: Structured Output Tracking with
Kernels. IEEE Trans. PATTERN Anal. Mach. Intell.

[8] Hare S., Saffari A., Torr P.H.S., 2011. Struck: Structured output tracking with
kernels. Proc IEEE Int Conf Comput Vis. 263-270.

[9] Henriques J.F., Caseiro R., Martins P., Batista J., 2012. Exploiting the circulant
structure of tracking-by-detection with kernels. [In:] European conference on
computer vision. Springer, 702-715.

[10] Henriques J.F., Caseiro R., Martins P., Batista J., 2015. High-speed tracking with
kernelized correlation filters. IEEE Trans. Pattern Anal. Mach. Intell. 37, 583-596.

[11] Kotzias D., Denil M., de Freitas N., Smyth P., 2015. From Group to Individual
Labels Using Deep Features. Presented at the .

[12] Nigam A., Tiwari K., Gupta P., 2016. Multiple texture information fusion for
finger-knuckle-print authentication system. Neurocomputing. 188, 190-205.

[13] Pestana J., Sanchez-Lopez J.L., Saripalli S., Campoy P., 2014. Computer vision
based general object following for gps-denied multirotor unmanned vehicles. [In:]
American Control Conference (ACC), IEEE, 1886-1891.

[14] Sherawat H., Dalal S., 2016. Palmprint Recognition System Using 2-D Gabor and
SVM as Classifier. IJITR. 4, 3007-3010.

[15] Solis Montero A., Lang J., Laganiere R., 2015. Scalable kernel correlation filter
with sparse feature integration. [In:] Proceedings of the IEEE International
Conference on Computer Vision Workshops, 24-31.

[16] Viola P., Jones M., 2001. Rapid object detection using a boosted cascade of simple
features. In: Computer Vision and Pattern Recognition, 2001. CVPR 2001.
Proceedings of the 2001 IEEE Computer Society Conference on.. IEEE, I-I.

[17] Visual Tracker Benchmark, http://cvlab.hanyang.ac.kr/tracker_benchmark/
datasets.html.

[18] Yang H., Shao L., Zheng F., Wang L., Song Z., 2011. Recent zadvances and trends
in visual tracking: A review. Neurocomputing. 74, 3823-3831.

[19] Yang L., Georgescu B., Zheng Y., Wang Y., Meer P., Comaniciu D., 2011.
Prediction Based Collaborative Trackers (PCT): A Robust and Accurate Approach
Toward 3D Medical Object Tracking. IEEE Trans. Med. Imaging. 30, 1921-1932.

[20] Zhang K., Zhang L., Yang M.-H., 2012. Real-time compressive tracking. [In:]
European Conference on Computer Vision, Springer, 864-877.

[21] Zhu G., Wang J., Wu Y., Lu H., 2015. Collaborative Correlation Tracking. [In:]
BMVC, 184-1.

[22] Zhu W., Lou Q., Vang Y.S., Xie X., 2016. Deep Multi-instance Networks with
Sparse Label Assignment for Whole Mammogram Classification. ArXiv Prepr.
ArXiv161205968.

24 Daniel Bujnowski, Agata Giełczyk

PORÓWNANIE METOD ŚLEDZENIA OBIEKTÓW

Streszczenie

Śledzenie obiektów jest coraz bardziej popularne i może być uznane za jedno
z najbardziej wymagających zadań w obszarze wizji komputerowej. W pracy
zaprezentowano pięć najbardziej wydajnych i najlepiej znanych algorytmów.
Zostały one zaimplementowane, przetestowane i porównane. Wyniki tego
porównania przedstawiono za pomocą wykresów oraz tabel. Podczas testów
oceniane były precyzja i dokładność śledzenia. Obserwowano również wpływ
czynników zakłócających na jakość śledzenia.

Słowa kluczowe: śledzenie obiektu, przetwarzanie obrazu, sztuczna inteligencja

UNIWERSYTET TECHNOLOGICZNO-PRZYRODNICZY
IM. JANA I JĘDRZEJA ŚNIADECKICH W BYDGOSZCZY

 ZESZYTY NAUKOWE NR 267
 TELEKOMUNIKACJA I ELEKTRONIKA 20 (2017) 25-33

SYSTEM APPROACH TO BUILDING FUNCTIONAL PROGRAMS

Vasyl Zaiats1, Jacek Majewski1, Beata Marciniak1, Marii Zaiats2

1UTP University of Science and Technology, Faculty Telecommunication, Computer Science
and Electrical Engineering, Al. prof. S. Kaliskiego 7, 85-785 Bydgoszcz, Poland,

e-mail: zvm01@rambler.ru, vasyl.zaiats@utp.edu.pl ,
2Lviv National Polytechnic University, ISM Department, st. S. Bandera 12, 79013 Lviv, Ukraine,

e-mail: zayats.mariya@gmail.com

Summary. The Basic approaches for constructions of the functional programs are
considered in the article. The main methods of optimization of the new functions
and of the functional are determined. The authors proposed a system approach to
building and optimizing the functionality of applications that can be used in the
creation of the system of recognizing objects and phenomena. The essence of the
approach in a gradual improvement software through software optimization. The
developed software is always open and its can be modified, improved or refilled.
Each of methods is illustrated by the examples of realization in the environment
of Lisp.

Keywords: functional program, declarative language, functional defined, Lisp
environment, accumulation parameters.

1. INTRODUCTION

We consider approaches to the construction and optimization of newly functional
programs to improve the efficiency and reliability of their work. The authors proposed
a system approach to creating software for the functional language. The essence of the
approach is the constant improvement of the developed software product, its renewal
and expansion of functional capabilities with insignificant algorithmic complications,
and in some cases be simplification.

The feasibility of using this approach is illustrated by specific application
developments are implemented in an environment of standard Lisp [10], which refers to
declarative programming languages.

Construction of modern programming languages today is far from perfect. Each of
the known languages have their advantages and disadvantages. To determine the
usefulness of a language should take into account such considerations:
a) Clarity, simplicity and consistency of language concepts. Obviously, we must to

avoid subtle and tricky language restrictions. These restrictions must not be too
ambiguous. Semantic clarity of language  is what determines its value.

b) Clarity structure of the program. This requirement must provide syntactic clarity
programs written in that language. It should be such as to design other than

26 V. Zaiats, J. Majewski, B. Marciniak, M. Zaiats

semantics, and syntactic records which differed. It is essential that the structure of
the program reflects the structure of the algorithm that allowed the development
programs the principles of structured programming, software design hierarchy - top
to bottom. In this approach, the structure of the program is readily available for the
diagnosis, modification and optimization.

c) Naturalness use. This should provide most successful in solving the problem of data
structure, to make operations, control structures and easily understandable syntax.
This greatly simplifies the creation of software in a given field of knowledge or
technical applications.

d) Ease of expansion. Software that are created in that language, can be seen as an
extension language. In fact, most programming languages, provides the programmer
mechanisms for creating routines. However, the properties of the language itself can
facilitate or complicate their use. This ease of expansion the most pronounced in
programming languages that have identical presentation of data and applications.

e) External software. This is one aspect that affects the efficiency of the use of
language. If we have powerful testing tools, editing, storage, software modifications,
then can be made weak language convenient to use, than it without a strong
technical support.

f) He effectiveness of creating, testing, transmission, implementation, modification and
practical using application programs.

2. ADVANTAGE OF THE FUNCTIONAL LANGUAGES TO
RELATION PROCEDURAL

One of the fundamental properties of programming languages, which enables clear
calculation described in that language  simple semantics. The great advantage of
functional languages like logical that there are some basic concepts, each of which has
a simple semantics. In particular, the semantics of functional languages understood in
terms of the values that are expressions, but not in terms of action sequences and their use.
But from a practical point of view it would be fairer to conclude that a strictly functional
language is very elementary and some of its expansion to significantly increased
efficiency and clarity of certain classes of deductions. Obviously, it is necessary to
distinguish between purely syntactic extensions the semantics requires caution, because it
is difficult to understand (clear) already debugged functional programs.

Today, developed hundreds of different programming languages. Even in 1969.
Jean E. Sammet [6, 10] gives a list of 120 languages that are quite widely used. This
amazing number of programming languages contradicts that most programmers in your
practice uses several programming languages, and many of them  one or two
programming languages. There is the question for what come to the development of
different languages at the unlikely possibility of their implementation. However, if not
limited to superficial acquaintance with the language, and have a deep understanding of
the concepts underlying the design of programs in that language, then no doubt you can
verify the feasibility of the development of various programming languages based on
the following considerations:
a) Due to different programming languages study improved understanding of

a particular language, its concepts and basic methods and techniques that it uses.

 System approach to building functional programs 27

A typical example is the recursion. With proper use it can be elegant, effective
program and its application to a simple algorithm could lead to an astronomical
increase in time costs. On the other hand, lack of use of recursion in languages such
as Fortran, Cobol and understanding of the basic principles and methods of
implementation of recursion can clarify the limitations of language, which at first
glance is false,

b) The value of programming languages expanding stock of useful programming
structures and promotes thinking. Working with data structures of one language, and
produce appropriate structure of thinking. By studying other languages and design
methods to implement, expand programming thesaurus.

c) Knowledge of several languages allows reasonably choose a programming language
for solving a particular problem,

d) The development of a new programming language, like natural language of human
communication is always easier if there are several well-known languages,

e) Knowledge of principles of construction of various programming languages
facilitates the development of a new programming language.

Construction of modern programming languages today is far from perfect. Each of
the known languages have their advantages and disadvantages.

Most modern programming languages are universal, since they give to record any
algorithm that language, if not impose restrictions on runtime and capacity of memory,
algorithmic complexity, etc. If anyone will offer a new programming language, it is
likely to be universal if ignored limits on memory or time. Comparing different
programming languages should not proceed with the proportion of what they can do and
qualitative differences that define elegance (briefness and clarity), lightness (transparency)
and efficiency (speed and hardware) programming them. This comparison should be
done in the context of specific applications.

Traditional (algorithmic) programming language versus declarative (descriptive)
is quite large and bulky, because do not allow:
a) maximize the capabilities of modern computer technology to ensure the effective-

ness of software;
b) clearly visualize algorithms and programs to provide easy inspection and modification

of the latter.

Declarative programming languages, which include strict functional programming
languages such as S-Lisp [10], R-Lisp [7], Reduce [2], Common Lisp and Auto-Lisp [1]
is quite simple and only provide it high enough the severity of programs compared with
traditional languages. Several functional programs can effectively run on modern
computers, however not as efficient as relevant programs with the assignment operator.
This is due to the structure of the architecture of modern computers. In addition, the
choice of a slightly different structure view, than is usual in Lisp, give tool for provides
a more clear representation of programs and increase their efficiency using modern
computers of old architecture.

On the one hand, modern programming languages should effectively use modern
machines, but from the other  to give the algorithms clearly express software to
facilitate verification of the latter. Strictly functional language has simple in structure,
shows a higher severity compared with traditional languages, where there is the
assignment operator. This is due, largely, with the way we present of data structures.

28 V. Zaiats, J. Majewski, B. Marciniak, M. Zaiats

Something the choice of data structures of can provide increased efficiency and
functional applications on modern computers. In particular, is a problem using the
features of the components of the result, because it is important to have elegant solution.

Ones from fundamental properties of programming languages, which enables
calculation, clearly describe the language - it is simplest semantics. The great advantage
of functional languages is that there are some basic concepts, each of which has
a simple semantics. In particular, the semantics of our language understood in terms of
the values that are expressions, but not in terms of action sequences and their use. But
from a practical point of view it would be fair to conclude that a strictly functional
language is very elementary and some of its expansion would significantly increased the
efficiency and clarity of certain classes of calculations. Obviously, it is necessary to
distinguish between purely syntactic extensions and extensions that require change
semantics. Changing the semantics requires caution, because it difficult then to
understand already debugged functional programs.

3. STRICTLY FUNCTIONAL LANGUAGE

When it comes to building a strictly functional language, new functions or
functional are based on some basic set of primitive features or functions [12]. These
include functions:

CAR (X)  it selecting the first element of the list X,
CDR (X)  return the remaining elements of list X without the first element,
CONS (X, Y)  construction of a new list, where the parameter X is the first

element in the list Y,
EQ (X, Y)  the predicate is true in the case of equivalent atoms X and Y.

The presence of these primitive functions and presentation arithmetic operations as
functions give the possibility of setting recursive (repeat) functional calls or appeals
functions to itself (principle of function composition) can build a fairly substantial
functional program [5, 8]. Demonstrate this procedure we can on example building of
function the CONNECTION (X, Y), what generates a new list, which will list all the
elements of X and Y. In addition, each argument can be either an atom as a list of arbitrary
length. Direct analysis of all possible cases in list X leads to such a functional definition:

CONNECTION (X, Y) = if EQ (X, NIL) then if EQ (Y, NIL) then NIL
another if Y EQ (Y, NIL) then X another
CONS (CAR (X), CONNECTION (CDR (X), Y))

Thus, if X = NIL connect (X, Y) = Y regardless of the value of Y, the definition
can be rewritten more optimal way:

CONNECTION (X, Y) = if EQ (X, NIL) then Y
then If EQ (Y, NIL) then X another
CONS (CAR (Y), connection (CDR (X), Y))

If we take into account, that when X = NIL regardless from kind of function Y we
have CONS (CAR (X), connect (CDR (X), Y), then checking’s for Y can also be put
down and we can write functional definition as:

 System approach to building functional programs 29

CONNECTION (X, Y) = if EQ (X, NIL) then Y else
CONS (CAR (X), CONNECTION (CDR (X), Y))

All three versions mean equivalent functions and provide the same result. The first
version can be preferred because it clearly lists all possible cases. The third version - is
its shortness. But the second and third versions of this tool for connect have different
efficiency. The second version avoids calculations in the case of Y = NIL by redundant
checks when Y <> NIL. The third version avoids revisions to Y, but requires rebuild X
even when Y = NI. Thus, this definition can be done more optimal, particularly using
additional sub functions.

Thus, we came to systematically important conclusions after considered
constructions of function СONNECTION(X, Y):
a) no other way to solve the problem optimally than continuous improvement achieved,
b) necessary technical instrument for continuous save given knowledge’s, them change

and improvement.

4. THE USE ADDITIONAL UNDER-FUNCTIONS

The often for building optimal features should be introduced additional functions
[13]. Thus, to optimize definition of the function CONNECTION (X, Y) previous
could be used intermediate function such as CONNECT(X, Y), which connects X and
Y assuming that Y <> NIL. Then we arrive at the definition:

CONNECTION (X, Y) = if EQ (X, NIL) then X another CONECT ((Y, NIL)
CONECT (X, Y) = if EQ (X, NIL) then Y
 another CONS (CAR (X), CONECT (CDR (X), Y))

Note, that in the previous section we got advantages combined second and third
versions thanks of the use function connect

It is generally welcome in a functional programming when the program of building
and identifying the main new features are defined in terms of the old. Thus, the
functional program consists of sets of sub-functions that are defined through the second
one. This feature or functionality that is the purpose of the calculations it is the main
program, the root cause of the other, and all other functions are sub-programs.

The choice of sub-functions in the development of the main features is the central
problem of structuring programs. Sometimes the standard sub-functions are in
themselves, but more frequent occasions when a good selection sub-functions special
purpose simplifies the structure of the set of functions in general. To build a well-
structured program, we can give one piece of advice: try to constantly improve what is
already done. Actually, this is one of the principles of optimal results not only in
a functional programming, but also in any other field of knowledge.

5. USE OF ACCUMULATION PARAMETERS

The idea of the method parameters of accumulation is to determine the function of
supporting an additional parameter that is used to accumulate the desired result [13].

30 V. Zaiats, J. Majewski, B. Marciniak, M. Zaiats

To illustrate the essence of this programming method to wrap function
ROTATION (X), this is responsible for the list’s elements, possibly empty. For this,
we introduce an additional function ROTATE (X), where X  a list that is subject to
rotation, and Y  an additional parameter that accumulates reverse list. We give the
following definition:

ROTATION (X)  IF EQ (X, NIL) then Y
ROTATE (СDR (X), CONS (CAR (X), Y))

Because of this feature can determine the function ROTATION (X)):

ROTATION (X) = ROTATE (X, NIL)

In beginning we explain how it works, and then describe the algorithm for its
construction. When called the function REVERSE (X, Y), y is a list of all accumulated
a list of items considered to be the rotated. So if X is NIL, then y contains all the
reverse list, and if x is not NIL, then we can accumulate y CAR (X) and then
recursively call the sample for processing CDR (X). Let us give a table of successive
calls function REVERSE (X, Y), that first time by help of functions ROTION (X)
drawn to the LIST (A B C D).

 Table 1. Table of successive calls function REVERSE (X, Y)

X Y
(А В С D)
(В С D)
(С D)
(D)
NIL

NIL
(A)
(B A)
(C B A)
(D C B A)

In fact, we recorded guessing definition of this function, and then described how
this works. In order to apply the conventional method to construct the functions is
necessary prove in appearance of results ROTATE(x, y) at an arbitrary y. Let the result
of the function rotate (x, y), where x and y are lists, possibly empty, a list of all
elements x, are taken in reverse order and are complemented by all elements y in their
original order. Thus

ROTATE (X, Y) = CONNECTION (ROTATION(X), Y)

Although this definition is not entirely appropriate because the unknown is the function
ROTATE. Yet now we can write the algorithm for constructing functions:

case (1): X = NIL ROTATE (X, Y) = Y
case (2): X = NIL
Let ROTATE(CDR (X), Z) = CONECTION (ROTATION CDR ((X), Z)

then
ROTATE (x, y) = CONECTION (ROTATION (X), Y) =
CONECTION (ROTATION (CDR (x)), CONS (CAR (x), y)) =
= ROTATE (CDR (X), CONS (CAR (X), Y))

 The algorithm is faster proved justice above the designated function than the
method of its construction, so in the second case, the transformation is quite complex.

 System approach to building functional programs 31

The problem of building effective functional programs can be successfully solved
by under-function successful recruitment of additional options. Indeed, if we count the
number of calls to the designer last version function ROTATION, they will be exactly
n, if the length of the list is x n. If you compare this number of calls the constructor with
a number of n × (n-1) / 2 in the case of the function ROTATION (X) without
parameters of accumulation, we have significant economy of machine resources.

6. DIRECTIONS OF OPTIMIZATION FUNCTIONAL LANGUAGES

The principal feature of modern computers is that they store calculated values in
the memory cells, occasionally replacing their contents or overwriting them. This
property is reflected in the design assignment, which is typical for traditional
programming languages. There is another aspect of the real machine, through which the
traditional language more effective compared to functional programming languages.
This concept of access to data structures using indexing. In this connection, functional
programs cannot achieve the same effect on modern computers as a program
algorithmic programming languages. We can specify at least three outing from this
situation:
a) in the unwillingness to put up with some loss of efficiency (in gains in quality and

elegance program) refuse functional programs,
b) to develop methods building of functional programs so that their expressiveness and

clarity combined with efficiency, comparable with programs written in traditional
programming languages,

c) restructure modern computers so as to meet the objectives of interpretation of the
functional programs.

From a certain point of view, each of these approaches has the right to exist.
Operation appropriation is closely associated with binding value for variable in
a functional language. It can be shown that any application where there is a transaction
assigning certain variable values can be transformed into functional program. At this
functional program with restrictions on its structure can be compiled into the program
with the assignment. Thus, one could argue that functional languages do not preclude
the effective use of modern computers. But this is only part of the problem because the
assignment transaction value of the array type

А[I]:=1
А[I+1]:=А[I]+1

significantly different from operation assignment value of variables. In a strictly
functional language is no concept of subtraction sequence of actions and we to behave
with arrays as with arrays of integer values. The basic operations on arrays are index
values for components and constructing a new array from of old values. If a  values of
the array, and  the index, X  value, the record

UPDATE (A, I, X)

means maintaining of array values a and change of I - th components on the value of X.

32 V. Zaiats, J. Majewski, B. Marciniak, M. Zaiats

And the expression

UPDATE (A I, A [J]), J, A [I])

means replace places of i-th and j-th array elements.
Therefore, the problem of correct interpretation of function correct update is quite

complicated taking into account that one and the same value array can have different
names. For the operation updating values in the array requires multiple copy these
values. The question is: can choose a data structure to fully or partially avoid these
copies? Problems arise when used for this purpose simple function as cons, as structures
that are components of the cons are not copied, but saved only pointers to them in the
structure resulting from cons. But the main advantage is lost today's computers - the
possibility of indexing. Indeed, the linear sequential access lists and access time-
element is proportional to the number of items and. However, in the array of memory
cells simultaneously is access to any item, regardless of position. Arrays can be
represented as a binary tree; access time proportional value ln2n. However it is
incompatible with access time to the unit, that is needed for such elementary statements
a [i]: = x. Functional language performance on modern computers cannot compete with
traditional languages, if efficiency is an absolute requirement. However, applications
written with by operators assignment structured values are programs low level. These
require considerable effort for their construction and therefore are difficult to correct
interpretation.

Increasing the speed and capacity of computer memory nowadays makes available
a number of important functional programs applied nature. But qualitative leap in the
use of functional languages can be expected only with the advent of new computer
architecture that is focused not on the use only of new technology, but her is tied with
peculiarities of the language itself, built based on the natural needs of the user.

7. CONCLUSIONS

With using discussed ways and suggested herein of system approach to building
applications to optimize complex structured functional programs we can improve of
performance, the technical means of realization and form of entry to avoid repetition
logical outcome, which is important when working with large volumes of data and
database processing of symbolic of information, creation of interpreters other
programming languages and recognition of objects complex dynamic structures.

This approach (permanent improvements, from simple to complex, from obvious
to unlikely) should be used as in the process of development of new information so and
in teaching that will promote a better understanding of material and its efficient use.
Creating applications with presentation of new material advisable to implement
regardless of content using universal modeling language (umm) [3, 6, 11], that have
advanced functional capabilities for creating, storing, permanent updating and
presentation of product information.

 System approach to building functional programs 33

BIBLIOGRAPHY

[1] Badaev Yu. I., 1999. Theory of functional programming. Movi Common Lisp is
Auto Lisp. Kiev, 150.

[2] Edneral V.F., Kryukov A.P., Rodionov A.Ya., 1984. Language of analytical
calculations. Publishing House of Moscow State University, 176.

[3] Gamma E., Helm R., Johnson R., Vlissides J., 2010. Wzorce projektowe. Helion
Gliwice.

[4] Henderson P., 1983. The functional programming. Application and implementatio.
Peace Moscow.

[5] Hüvenen P.E., Slepyan J., 1990. The World of Lisp. In two vol. T.1. Introduction
to Lisp language and functional programming. Trans.: Myr, 447.

[6] Jean E. Sammet J.E., 1969. Programming Languages: History and Fundamentals.
Prentice-Hall New Yersey.

[7] Kryukov A.P., Rodyonov A.Y., Taranov E.M., Shablyhyn E.M., 1991.
Programming language for R-Lisp, Radio and communication, 192.

[8] Maurer W.U., 1972. The programmer's introduction to LISP. London: Macdonald;
New York: American Elsevier.

[9] McAllister J., 1987. Artificial Intelligence and PROLOG for Microcomputers.
Hodder Arnold London.

[10] Mccarthy J., 1960. Recursive functions of symbolic expressions and their
computation by machine, Comm. ACM Vol. 3, P.184-195.

[11] Wrycza S., 2006. UML 2.1, ćwiczenia. Praca zbiorowa, Helion Gliwice.
[12] Zayats V.M., 1999. The summary of the lecture in the course "Functional

programming”. Lviv, 55.
[13] Zaiats V.M., Zaiats M.M., 2006. Logical and functional programming. Training

manual. Publisher Beskyd Bit Lviv, 352.

PODEJŚCIE SYSTEMATYCZNE DO BUDOWANIA
PROGRAMÓW FUNKCJONALNYCH

Streszczenie

W pracy są rozważane podstawowe założenia konstrukcji programów
funkcjonalnych. Określono główne metody optymalizacji nowych funkcji
i funkcjonalności. Autorzy zaproponowali podejście systemowe do budowania
i optymalizacji funkcjonalności aplikacji, które mogą być wykorzystane przy
tworzeniu systemów rozpoznawania obiektów i zjawisk. Istotą proponowanego
sposobu na optymalne rozwiązanie problemu jest ciągła poprawa, bazująca na
optymalizacji funkcjonalnej elementów składowych oprogramowania. Rozwinięte
oprogramowanie jest zawsze otwarte i może być modyfikowane, udoskonalane
lub uzupełniane. Każda z proponowanych w pracy metod, przedstawiona jest jako
przykład realizacji w środowisku Lisp.

Słowa kluczowe: program funkcjonalny, język deklaratywny, oprogramowanie
zdefiniowane funkcjonalnie, środowisko Lisp, parametry
akumulacji

Lista recenzentów prac opublikowanych w 2017 roku
Reviewers list publication published in 2017

Jens Myrup Pedersen (Aalborg University)
Adrian Gligor (Petru Maior University of Tîrgu Mureș)
Cristian Dumitru (Petru Maior University of Tîrgu Mureș)
Łukasz Zabłudowski (Uniwersytet technologiczno-Przyrodniczy)
Mścisław Śrutek (Uniwersytet Technologiczno-Przyrodniczy)
Yarema Savyla (Lviv National University of Ukraine)
Ihor Yavorskyy (Uniwersytet Technologiczno-Przyrodniczy)

