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Abstract. We study the oscillation of first-order linear difference equations with
non-monotone deviating arguments. Iterative oscillation criteria are obtained which
essentially improve, extend, and simplify some known conditions. These results will be
applied to some numerical examples.

Keywords: difference equations, oscillation, non-monotone advanced arguments.

Mathematics Subject Classification: 39A10, 39A21.

1. INTRODUCTION

In this work, we focus our attention on the oscillatory character of the first-order
linear difference equation with variable advanced argument

Vu(r) —a(r)u(€(r)) =0, reN, (1.1)

its dual retarded difference equation

Au(r) +a(rju(é(r)) =0, & No, (1.2)

where N and Ny are respectively the set of all positive and nonnegative integers,
(a(r))r>1 and (a(r)),>o are sequences of nonnegative real numbers and (£(r)),>1 and

(&(r))r>0 are sequences of integers such that

Ery>r+1, reN, Ery<r—1, reNp,

also, Vu(r) = u(r) —u(r — 1) and Au(r) = u(r +1) —u(r). Throughout this paper, we

assume that there exist nondecreasing sequences of integers ({(r)),>1 and ({(r))r>0
such that

Er)>¢(ry>r+1, reN and £(r)<{(r)<r—-1, reN,.
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Furthermore, we will use the following notation:

s—1 s—1
Y piG =0, [[pG)=1,
j=s j=s
p(r) = rjnzlgé“(J% p(r) = Org%{(ﬂ, (1.3)
£(r) ¢(r)
f=liminf »  a(j), y=lminf Y a(j),
j=r+1 j=r+1
. r—1 r—1
f = lim inf Z a(j), 7= liminf Z a(j)
J=E(r) §=C(r)
and
0 if v> %,
Aw)=<S1—-v—-VI—-20—12 .
5 if ve [0, %] .
U

Also, we assume that A(u) is the smaller root of A = e¥*.

The qualitative properties of delay differential equations and their discrete analogues
(i.e., difference equations with retarded arguments) have attracted the attention of
many mathematicians. In fact, these properties give more insight into the understanding
of the dynamics of these equations. The oscillation property can be considered as
one of the important features that appear in many applications. As a result, this topic
has received much attention from researchers, see for example [1,2,5-25] and the
references cited therein.

The incomplete theoretical understanding of the oscillation theory of Eq. (1.1) and
its dual, Eq. (1.2), has encouraged many researchers to investigate this property. Very
recently, there have been great efforts to establish new sufficient oscillation conditions.
This motivates us to develop and extend some techniques introduced by Attia [2] to
study the oscillation of equations (1.1) and (1.2). Several oscillation criteria for the
latter equations are obtained.

The following summary is intended to highlight the most recent results on the
oscillation of Eq. (1.1).

Braverman et al. [5] defined the sequence {§,+1(r, s)}m>0 recursively as follows:

D)= [ (-a), Qilrs)= [ (1-a@0! Ge@).  (14)
l=r+1 I=r+1

Then the authors proved that Eq. (1.1) is oscillatory if

p(r)

limsup 3 a(7)2" (p(r),€(7)) > 1, (1.5)

T—00
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or
limsup Y~ a (), (p(r), () > 1= A(). (1.6)

Asteris and Chatzarakis [1], Chatzarakis and Jadlovska [8] and Chatzarakis [7] estab-
lished respectively the conditions

limsup » a(j) —>1, (1.7)
L hmp(r)+1 1_Pm(Jl)
where
p(r) £(9) 1
Pm(’f') = a(?‘) 1 + Z a(]) H 1_7() s and PU(T) = a(?‘),
j=r+1 ji=p(r)+1 m—1{J1
p(r) £(9) £(j1) 1
limsup » _ a(j) exp > a1 T=0mGa) >1-A(B), (1.8)
T = J1=p(r)+1 j2=j1+1 miJ2
where
£(r) £(9) £(51) 1
Qm(r)=a(r) |1+ Y a@exp | Y a() [[ —F—F
j=r+1 Ji=r+1 jrmiipr LT @mea(2)
Qo(r) = A(B)a(r),
and
p(r) &) &(1) £(j2) 1
limsup » a(exp [ Y aG)exp| Y. aG) [[ 5=
r—oo T . ) L l_Fm(.]?))
j=r ji=p(r)+1 J2=j1+1 Jjz=j2+1
(1.9)
where
F.(r)
&(r) £(4) £(51) £(52) 1
—a) |1+ aew | Y aGew( Y a2 [ 7—5—5)] |
4 & & ALl 1 —Fh_1(d3)
j=r+1 Ji=r+1 Jj2=j1+1 Jjz=j2+1
with

£3J) £(91)

£(r)
Fy(r)=a(r) |1+ Y a(i)exp | D a(i)exp [AB) D aljz)

j=r+1 Ji=r+1 J2=J1+1
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Attia and Chatzarakis [4] obtained the oscillation criterion

lim sup TI_/Ijm(r)
1-3

rreo j=o(r—1)+1 a(j)
/f 51(_1) ) (1.10)
+ ) a(j) . — > 1,
e 1 —a(j1)Zm(j1,€01))
where
r—1 £@9) £(51) 1
W)= > a() Y al) ][] RS
j=o(r—1)+1 ji=r Go=p(r)+1 1- a(j2)Zm(j27£(.]2))
Zm (7, 8)
_ - a(j)
o j=r4+1 (1 — =2 Zf(j) (j )Hi(jl) 1 £G)=r’
! €G)—r Zegi=r+1 VIV Ljo—ji 11 T=00) 2, (2 €G2))
Zo(’l“, 8) = 1,
and
o(r)=max{s € Ng: s <r, {(s) <r+1}. (1.11)

2. MAIN RESULTS

2.1. ADVANCED DIFFERENCE EQUATIONS

Let u(r) be an eventually positive solution of Eq. (1.1). The following four lemmas
will be needed later.

Lemma 2.1 ([5]). If m € N and k > r, then

u(r) < Qu(r, k)u(k),
where Q. (r, k) is defined by (1.4).
Lemma 2.2 ([7, Lemma 2.8]). If 0 <y < %, then

lim inf u(r — 1)

oo u(((r))
Lemma 2.3. If m € Ny, then Z;;l,(r_l)_H a(j) <1 and

> A(7). (2.1)

r—1 . (g . j1
u(r 1) | Siena 00) 52 al) 5
> — :
u(¢(r)) 1- Zj:o’(r—l)+1 a(j)
for all sufficiently large r, where o(r) is defined by (1.11).
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Proof. Summing up Eq. (1.1) from o(r — 1) + 1 to r — 1, we get
r—1
ulr=1) —u(o(r—=1)— > a(u() =0. (23)
j=o(r—1)+1

In view of £(j) > r for o(r — 1) + 1 < j <r — 1, we conclude that

£(4)

w(€(5)) = ulr = 1)+ Y a(jr)u

Ji=r

Substituting into (2.3), we obtain

ulr—1) —u(o(r —1)) —u(r — 1) i a(y)

j=o(r—1)+1
r—1 £(4)
- Z a(j) Z a(ji)uw(€(j1)) = 0.
j=o(r—1)+1 a=r

Since ¢(j1) > ¢(r) for j; > r, then the nondecreasing nature of u(r) implies that

u(r—1) —u(o(r — 1)) —u(r —1) i a(y)

j=o(r—1)+1
_— £0) ;
e " ol u(€(j1))
oy 30 )3 el ey 2

From this and the positivity of u(co(r — 1)), it follows that

S S o) SR (s MG
ur=1) (1= > al) | >ur) Y ali) ) a(ﬁ)u@(. ) = 0.
j=o(r—1)+1 j=o(r—1)+1 ji=r J
Consequently, 37~ (17(7, 1+1@(j) <1 and
u(r=1) _ Sy @) 52, a (i) e
u(¢(r)) 1-— Z; ;(r 41 a(j) ’

The proof is complete.

Define the sequence {S,,(r)}°_, as follows:

H 1
S (7") Jj= C(T +1 1—a(j)Sm—1(j)
n 1—Gp(r)

form=1,2,...

)



398 Emad R. Attia and Bassant M. El-Matary

where Sp(r) =1 and

1
Gn(r) =
1 JI;[2 1- Gm—l(cj_l(r))
¢(r) £(51) E(r—1)
>ooaly) D al2) - > alik)
A=HL p=C) =)+
m 1 C(T) f(jl)
g @y 2 o) 2 b
Jj= Ji=r+1 J2=¢(r)+1
f(jmfl) §(jM) 1
Z a(jm) H - -
m=Cm (1) +1 =y LT W+ 1)Sm1(met)
form=1,2,...
Lemma 2.4. If m € Ny, then a(r)Sm(r) < 1 and

for all sufficiently large 7.

Proof. Since u(r) is an eventually positive solution of Eq. (1.1), then wu(r) is an even-
tually non-decreasing sequence. Hence, for all sufficiently large r, we have

uf(%)) > So(r). (2.5)
Dividing Eq. (1.1) by u(r), we obtain
w1 ()
0< o) =1—a(r) ) (2.6)
Taking the product on both sides, from k + 1 to r, we get
ulk) o w1 EN((36)))
an - A =g = 1D (1-a 5.
that is,
: 1
u(r) = u(k ——— forallr > k. 2.7
=) T1 =5 > (2.7)
Summing up Eq. (1.1) from r + 1 to {(r), we have
¢(r)
u(C(r) —u(r) = Y a(j)ul(jr)) = 0. (2.8)

ji=r+1
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Taking into account the fact that £(j1) > ((j1) > ¢(r) for j3 > r + 1, it follows from
(2.7) that

%T:) £ﬁ) 1
w(¢(r) —u(r) —u(() Y ali) S —)
ji=r+1 PRETEIRE MM%
which in view of (2.5) implies that
¢(r) £(J1) 1
—u(r) — j . —")
v =) “(C(T))h;l a(j1)j2_££+1 1 —a(j2)S(j2) —

That is,

¢(r) . (j1) 1
u(¢(r)) (1 - Z a(j1) H 1_01(”)%02)) > u(r) >0,

ji=r+1 jo=¢(r)+1
which in turn leads to
ul(C(r) | 1 1

- ¢(r) 1 — )
u(r) =500 Cl(]l)l_[j2 —¢(r)+1 1=a(G2)50G2) S 1-Gilr)

(2.9)

This together with (2.5) and (2.7), implies that
u(€(r) _ u(€(r)) u(¢(r)

u(r)  u((r)) u(r)
HE T) (2.10)

J=C(r)+1 I= a(])So(J) Sa(r).

&(j1) 1
Zh =r+1 a(]l)sz =¢(r)+1 1-a(y2)So(j2)
For r+1 < j; < ((r), we have
£(51)
w(€() =u(C(r) + > ali2)u(§(2)).
J2=¢(r)+1
Substituting into (2.8), we get
¢(r) ¢(r) £(i)

u(C(r)) —u(r) —u(C(r) Y aG)— Y alih) Y a(i2)u(s)) =0.

Ji=r+1 Ji=r+1 Jjo=¢(r)+1
Since £(j2) > (2(r) for £(j1) > j2 > ((r), it follows from (2.7) that
¢(r)

u(¢(r)) = u(r) —u(C(r) Y a()
Jji=r+1
¢(r) £(J1) £(J2) 1

—u(@) Y aby) Yo a2 [l gy =0

e A FE N A e
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From (2.9) and (2.10) we have

¢(r)

. 1
u(¢(r)) — u(r) — u(¢(r)) jlgﬂ a(ji) — U(C(’”))W
: a(j1) a(jz2) - — >0,
WS e e L A0)510)
which in turn leads to
uC(r) 1
u(r) — 1—Ga(r)’
Then
u(g(r))
u(r) 52(r)
Continuing in this way m times, we get
¢(r) ¢(r) £(j1)
w(C(r) —ulr) —u(C(r) D a()—uw(@) Y aih) Y, alj)
Ji=r+1 ji=r+1 ja=¢(r)+1
¢(r) £(J1) E(fm—2)
— =@ ) Y aGh) Y a(a) e D, alime)
Ji=r+l _ J2=C(r)+1 ‘ Jm—1=¢M72(r)+1 (2.11)
¢(r) £(41) E(Jm—1)
—u(C™(r) Y a(h) Y. a(a)... > a(in)
ji=r+1 J2=¢(r)+1 Fm=Cm"1(r)+1
E0m) 1

|| : =0.
- w(€(Gm+1))
mﬂ=wwH1L‘MMHQ7MW§

It is clear for K =2,3,...,m that

u(Ck(r u(C3(r u(¢I(r
u(ctr) = 2D e e = ucr) TT 82D

=W wle) o=y
On the other hand, if we assume that
u(¢(r) L k)
ur) S 1G4 Ty 2 Sl
then
k : 1
') 2w | 7= — gy k= b2eom
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Substituting into (2.11), we get

¢(r)
u(¢(r)) = u(r) —u(((r)) Y a()
Jji=r+1
—uC(r)—F a(j1) a(j2)
1= GuaC)) , &= " &
m—1 1
— .= U(C(T)) j];[2 1 — Gm_l(cj—l(r))
¢(r) &(41) E(Gm—2)
dooaGy Y aGe) .. > aljm—)
Ji=r+1 J2=¢(r)+1 Jm—1=¢m"2(r)+1
i 1
— .= U(((T))g 1_ Gm_l(cj—l(r))
¢(r) £() E(@Gm—1)
>ooaGy Y aGe).. > aljm)
q1=r+1 Ja=C(r)+1 m=Cm =1 (r)+1
E(Jm+1) 1

II >0,

Frg1=Cm(r)+1 1 — a(fm+1)Sm—1(Jm+1)

that is,
u(¢(r)) 1
> . 2.12

u(r) T 1—=Gp(r) (212)
Therefore,

u(é(r))

u(r) — Sim(r)

By virtue of (2.6) and the above inequality, we get a(r)Sp,(r) < 1. The proof is
complete. O

Theorem 2.5. Let m € Ng. Then each of the following conditions is sufficient for
the oscillation of Eq. (1.1):

(i)
a(r;)Sm(r;) > 1 for all j € N, (2.13)
where {r;};>1 is an unbounded sequence of positive integers,
(i)
¢(r) 46)) 1
lim su a(j ———>1—-A(y). 2.14
D DL U G ey o e

j=r J1=¢(r)+1
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Proof. If not, without loss of generality we can assume that there exists an eventually
positive solution u(r) of Eq. (1.1). It follows from Lemma 2.4 that a(r)Sy,(r) < 1 for
all m € Ny and all sufficiently large r. This contradicts (2.13) and completes the proof
of (i). Summing up Eq. (1.1) from r to {(r), we get

¢(r)
u(¢(r)) = u(r = 1) = Y alj)ul(5) = 0.
j=r
By (2.7), we obtain
¢(r) £(9) 1
u(¢(r)) —u(r —1) —u(((r)) Za(j) H m =0.
= = o) TG
From this and (2.4) we get
u(¢(r)) —u(r —1) —u((r)) Y _a(j) . — >0,
J=r 1=C(r)+1 1= a(j1)Sm(j1)
that is,
¢(r) £(9)
1 u(r —1)
dYoal) I —= <1-
i=r =C(r)+1 a(j1)Sm(j1) u(¢(r))
Consequently,
¢(r) £(9)
) 1 ) u(r—1)
lim su a —_— <1 -—liminf ———2.
Hoopg S VO ey oy noe u(((r))
T ji=¢(r)+1
The positivity of u(r) and (2.1) implies that
¢(r) 51(_[]) 1
limsup » a(j) —— = < 1-A(y),
7—00 J=r Ji=C(r)+1 1- a(]l)Sm(Jl)
which contradicts with (2.14). The proof is complete. O

Theorem 2.6. Let m € Ny. Then each of the following conditions is sufficient to
imply the oscillation of Eq. (1.1):
(i)
r;cfl

doa)=1 for all k >N, (2.15)
j=o(r,—1)+1

where {r';}k>1 is an unbounded sequence of positive integers,
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(i)
lim sup R(Ta m) + a(]) _— > 1’ (216)
e j=r J1=¢(r)+1 1= a(j1)Sm(i)
where
r—1 A\ NE() £(1)
R(r,m) = zj:U(T—l)-i-l a(j) Zjl =r a(j1) Hj2 =C(j1)+1 m ,

1- Z; ;(r 1)+1 a(j)
where o(r) is defined by (1.11).

Proof. As before, assume that u(r) is an eventually positive solution of Eq. (1.1). Then
Lemma 2.3 implies that

r—1
Z a(j) <1 for all sufficiently large r.
j=o(r—1)+1

This inequality contradicts (2.15) and hence completes the proof of (i).
Using the same argument that is given in the proof of Theorem 2.5, we obtain

( ¢(r) £3)

1
+Z I — =t

u(
= L~ eSS
By (2.2) and (2.4), we have

r—1 S\ U r i
Zj:U(T*l){»l a’( )2]1 =r ( ) (5(‘;1)) + Cz: §(Hj) 1 <1
r—1 — - VN .
1= 3 1) a(d) — a1:<<r)+1 1 —a(j1)Sm(j1)
(2.17)
From (2.4) and (2.7), we obtain
. £()
wei) . 1
u(CUn)) ~ e L 0(52)Sm(52)
Substituting into (2.17), we have
R(r,m) + a(j) - — < 1.
i=r 1=C(r)+1 1 —a(j1)Sm (i)
Then
limsup | R(r,m) + — | <L
r—00 — J1:C(T‘)+1 1- a(]l)sm(jl)

This contradiction completes the proof of theorem. O]
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Using Lemma 2.1 instead of Lemma 2.4 in the proof of the preceding theorem,
we obtain the following result:

Theorem 2.7. If m € N and

¢
limsup { D(r,m) + 3 a(j)2" (C(),€G)) | > 1, (2.18)

r—00

where

S e rnya1 @) S5 (i) (¢ (), EGn))
1‘2; clr(r 1)+1 a(j)

where o(r) and Q. (1, k), k > r are defined respectively by (1.11) and (1.4), then every
solution of (1.1) is oscillatory.

D(r,m) =

)

2.2. RETARDED DIFFERENCE EQUATIONS

In this section, we obtain many oscillation criteria for the (dual) retarded difference
equation (1.2). The proofs of these results are quite similar to those for the advanced
difference equation (1.1), and hence they will be omitted.

Let u(r) be a positive solution of Eq. (1.2). The following results are crucial in
establishing our main results.

Lemma 2.8 ([5]). If m € N and r > k, then
u(r) < Qu(r, k)u(k),
where Q, (1, k) is defined by

D)= [[Q-a0). Bunlrs) =[] (1-a0@, (LE0)).
l=s l=s

Lemma 2.9 ([7, Lemma 2.2]). If0 <7 < %, then

u(r+1) _
li f—=2 > A®7).
) A0
Lemma 2.10. Let
G(r) =min{s € N:s>rE(s) >r—1}.

If m € Ny, then Z;(Trt_ll a(j) <1 and

_ - J1=£(35)
u(C(r) 1— et ag)

for all sufficiently large 7.

FrHD=1Z) ST _ g(y) M)
u(r +1) S Zj:rJrl aj)d.. = a(jl)u(f(ji))
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Let the sequence {S,,(r)}°_, be defined by

m=

¢(r)—1 1
g _ HJ‘:E(T) 1-a(j)Sm—1(5)

form=1,2,...,

1—Gp(r)
where So(r) = 1 and
. m—1 k 1 r—1 Z(T)—l Ekil(r)_l
Gm(r) = — —j—1 Z a(jl) Z a(jk) s Z a(jr)
h=1j=21- Gm-1(¢" () J1=¢(r) J2=€(j1) e=E(jr—1)
m ) r—1 C(n-1 [ E!
+11 ——— > al) D>, aG)... >, alim)
=21 = Gmaa(C (1) J1=C(r) j2=E(j1) Im=E(Gm—-1)
¢ (r)-1 1

1T =

. T 1- a(jm+1)5m71(jerl)
]7n+17£(]7u)

form=1,2,...

Lemma 2.11. If m € Ny, then a(r)S,(r) <1 and

for all sufficiently large r.

Theorem 2.12. Let m € Ny. Then each of the following conditions is sufficient for
the oscillation of Eq. (1.2):

(i) there exists an unbounded sequence of positive integers {r;};>1 such that

a(rj)Sm(r;) >1 foralljeN,

(i)

T 7“)—

¢(r)—1
1
lim sup a(j) — = > 1-A®).
T—00 Z . H 1—@(]1)Sm(j1)

J=¢(r) J1=£(4)
Theorem 2.13. Assume that m € Ny. Then Eq. (1.2) is oscillatory if either one of
the following holds:

(i) there exists an unbounded sequence of positive integers {r'y}r>1 such that

o(r,+1)—1

> oai) =1 for all k > N,

j:rﬁc—o—l
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(i)
r Z(T)_l 1
limsup | R(r,m) + a(j) —— | > 1,
r—00 Z . H 1 —a(j1)Sm(j1)
J=¢(r) J1=£(7)
where

o(r+1)—1_—/ . C(G1)—-1 1
Y @0) 25 2e) WUV a0 egimaGy

R(Ta m) = 1_ Zq‘(r—:ll) a(])
J=r

Theorem 2.14. If m € N and

¢(r)
limsup [ D(r,m +Z (r),€() | > 1, (2.19)

T—00

where
— o(r—1)410 . C(j2), €0
Dir.m) = (1)1 Al )Er:ﬁl a1, (C(72).8())
1- Zg o(r—1)+1 a‘(])
then every solution of Eq. (1.2) is oscillatory.
Remark 2.15.

(i) Condition (2.18) improves condition (1.5).
(ii) Many previous works can be improved by using Lemmas 2.3 and 2.10.

)

3. NUMERICAL EXAMPLES
Using some numerical examples, we clarify the strength of some of our results. All the
following calculations are performed by the Maple software.

Example 3.1. Consider the equation
Vu(r) —a(r)u(é(r)) =0, reN, (3.1)

where
1 ifre{2r,+92r,+7,...,2r, — 1}, k€N,
a(r) = .
0 otherwise,

where 7, € N, 2rp11 > 2r, + 13 and

r+3 if r = 2k,
r+1 if r =2k+1,

¢(r) = keN.

In view of (1.3) and (1.11), we have respectively

r—+2 if r =2k

= ’ k e N,
p(r) {7”+1 ifr=2k+1,
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and
={1Ty T, ken
Since
£(r) €(2ri+9) 2rg+10
0< hrrgggfi;rl a(i) < klgr()l@ i:g;rloa(z) kl;r& Zl:g’;rma(z) 0,

then 8 = 0, and so condition (1.6) is not satisfied. Also,

p(r)
lim sup Z a(j)Q;1 (p(r),£(5))

T—00

p(27%)

= kll)ngo Z CL(])Q3_1 (p(zrk)af(]))
u

T W

where W(u) = = = Therefore,
(1—p)

p(r)
limsupZa(j)le (p(r),€(4)) <0.998 < 1
j=r

r—00

for all p € [0.1705, 0.1785], and hence condition (1.5) can not be applied for all
1 € [0.1705, 0.1785]. Also,

' p(r) ' £09) 1
h:n_igp ; a(j) jl_g)ﬂ m
. p(2r1) . £(J) 1
= lim 2 a(j) jl_pgmﬂ 1-Pi(j1)
:1_udleD+u

+

)

w
U=p (4B (1—n (n+2+ B + =)

where B(u) = —t—~5. Therefore,

(1-pn)*"
p(r) £(9) 1
lim su a(j —— < 09987 < 1
r%oopz_: (J> . 7]‘_[ 1_P1(.71)
J=r Ji=p(r)+1
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for all p € [0.1705, 0.192]. Then condition (1.7) with m = 1 can not be applied for all
p € [0.1705, 0.192]. Finally, condition (1.8) with m = 1 is not satisfied for p = 0.1705,
since

p(r) £(9) £(41)

. 1
hmsupz ) exp Z a(j1) H m < 0.893 < 1.

T—>00 . . .
J1=p(r)+1 J2=j1+1

On the contrary, we show how Theorem 2.7 can be used to prove the oscillation of
Eq. (3.1) for all 1 € [0.1705, 0.23].
Let ¢(r) = p(r) (that is, defined by (1.3)) and

¢(r)
A(r) = D(r,3) + Z (1), €6))
where
D(r,m) = S ey Al );i oGO, 1)
1- Z] =o(r—1)+1 a(j)
Then
Aary) = " i X5 T, % (2 +8,6)
1- Zj=k2rk—2 a(])
2r;+2
+ ) a3t 2k +3,£(7) -
J=2r

By using Maple, we obtain

A(QTL;C) =

1 2 @ ) K
1 -+ +u
12u< L=puWw) ) 1—pW(n)
+ 5 w ’
(L= pW(n) (1 - #)

—h

where W (u) is defined as above. Consequently,

¢(r
limsup | D(r,3) + Za(j)le (C(r),&(7)) | = lim A(2rg) > 1

r—00 - k—o0

for all v € [0.1705, 0.23]. Therefore, condition (2.18) with m = 3 is satisfied, and hence
Eq. (3.1) is oscillatory for all x € [0.1705, 0.23].
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Example 3.2. Consider the equation

Vu(r) —a(r)u(€(r)) =0, reN, (3.2)
where
0.177 if 37k, 3 1,...,3 16
a(r) = tr € Brie St LSk 16k
0.0001 otherwise,
where 7, € N, 3rg11 > 3r, + 18 and
r+1 if r = 3k,
Ery=<¢r+3 ifr=3k+1, kel
r+1 if r=3k+2,
As before, (1.3) and (1.11) lead respectively to
r+1 if r = 3k,
p(r)=<r+2 ifr=3k+1, keN,
r+1 if r=3k+2,
and
r—1 if r = 3k,
o(r)y=<r—1 ifr=3k+1, kel
r—2 if r =3k + 2,

Let ¢(r) = p(r) (that is, defined by (1.3)) and

r—1 NS (a0 TTEG 1
2 j=or—1)+12() 25,5, a) I3, 20,11 T=emiset)

I(T) - r—1 .
1- Zj:a(r71)+1 a(])
p(r) £(9) 1
+ Cl(j) T N~ 7
jX:;” jl—pl(_j[l)Jrl ]‘_a(jl)SZ(]l)
where
115" I
So(r) = Jj=¢(r)+1 1—a(5)S1(4)
1—Ga(r) ’
and
¢(r) 1 ¢(r)

Ga(r) = Z a(il)‘*‘ﬁ

ji=r+1
£()

> a(a)

J2=¢(r)+1

£(J2)

H 1 —a(j3)S1(j3)

Jz=¢*(r)+1

@, 2,

ji=r+1

1
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Then

3r £(J2)
ijko'(?)’!’k)-‘rl 0.177 2]1 =3ri+1 0.177 HJ2 2P(J1)+1 m

3n
1= 30" g 0177

I(3ry+1) =

p(3ri+1) £(7)

1
+ 2 I ey

J=3rK+1 j1:p(3rk+1)+1

Consequently, I(3r; 4+ 1) = 1.001595294 > 1, and so limy_, o, [(3rx + 1) > 1, it follows
that condition (2.16) with m = 2 is satisfied, and hence Eq. (3.2) oscillates.

However, as we will show, many previous oscillation conditions fail to do so. It is
clear that

£(r) E(3re+17) 3rp+18
0.0001 <1 ) < )= li ) = 0.
Lrgggf Z klim Z a(y) klinolo' Z a(y) = 0.0001,
j=r+1 Jj=3rr+18 Jj=3rr+18

it follows that 8 =y = 0.0001, A(5) = 1.010152720 and 1 — A(5) > 0.9999. Observe
that

p(3r+1) 3rp+3
> a()Q !t (pBri +1),€(7) = 0177 > Q1 3y +3,£(1) < 0.9349.
j=3rr+1 J=3rr+1
Consequently,
p(r) p(3rit1)
limsup » | a()2" (p(r).£(7)) = 0177 lim > Q7" (p(3rk +1),£())
T = J =3rk+1

< 0.9349 < 1 — A(B).
That is, condition (1.6) with m =4 can not be applied. Finally, observe that

p(Brr+1) £(9) £(j1)

. . 1
Y ali)exp > a1 T=0iGa)
j=3rp+1 J1=p(3r+1)+1 J2=J1+1 112
< 0.9165785 < 1 — A(p),
p(3r+1) &) £(1) £(j2) 1
> aen| > ates| Y b ] =
j=3ri+1 J1=p(3rr+1)+1 Je=j1+1 Jz=j2+1 13
<0.99490 < 1 — A(B),
and
Wn(Bri+1) ”(37§ Y 51(—[” 1
- - - .
L= i@y o) o5 ]lzp(grk+1)+1 L= ali) 211, 0)

< 0.835 < 1.
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Then
p(r) £(41) £(41) 1
limsup ) _ a(j) exp > at) ] =0y <1-—A(p),
r—00 J=r J1=p(r)+1 jomj141 1(J2
p(r) £(4)
limsup » a(j)exp [ Y a(j)
T = J1=p(r)+1
£(51) £(j2) 1
oo | S at) [[ e | | <1-40)
£ AL 11— Fi(j3)
Jj2=Jj1+1 Jjz=j2+1
and
lim sup ( ,.‘_/[fm(r) -
rovoo \1 =320 0 1)1 a(d)
+_alj) . — ) <0.836 < 1.
pur N a(j1)Z1(j1,€(51))

Therefore none of the conditions (1.8), (1.9) and (1.10) with m = 1 can be applied to
Eq. (3.2).

4. CONCLUSION

In this work we studied the oscillation criteria for first-order difference equations with
deviating arguments. We obtained new oscillation criteria that improve many previous
ones. The application as well as the strength of some of our results have been shown
using two examples. Some of our results could support the development of the oscillation
theory for difference equations with deviating arguments, for example, Lemmas 2.4
and 2.11. Using the techniques given in this paper, several new oscillation criteria for
first-order difference equations with several nonmonotone deviating arguments, as well
as delay difference equations with oscillating coefficients, can be obtained.
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